Advertisement

Microgravity Science and Technology

, Volume 29, Issue 6, pp 467–473 | Cite as

Hypergravity of 10g Changes Plant Growth, Anatomy, Chloroplast Size, and Photosynthesis in the Moss Physcomitrella patens

  • Kaori Takemura
  • Rina Watanabe
  • Ryuji Kameishi
  • Naoya Sakaguchi
  • Hiroyuki Kamachi
  • Atsushi Kume
  • Ichirou Karahara
  • Yuko T. HanbaEmail author
  • Tomomichi Fujita
Original Article
Part of the following topical collections:
  1. Topical Collection on Asian Microgravity Research in Physics, Materials and Life Science

Abstract

The photosynthetic and anatomical responses of bryophytes to changes in gravity will provide crucial information for estimating how these plant traits evolved to adapt to changes in gravity in land plant history. We performed long-term hypergravity experiments at 10g for 4 and 8 weeks using the moss Physcomitrella patens with two centrifuges equipped with lighting systems that enable long-term plant growth under hypergravity with irradiance. The aims of this study are (1) to quantify changes in the anatomy and morphology of P. patens, and (2) to analyze the post-effects of hypergravity on photosynthesis by P. patens in relation to these changes. We measured photosynthesis by P. patens for a population of gametophores (e.g., canopy) in Petri dishes and plant culture boxes. Gametophore numbers increased by 9% for a canopy of P. patens, with 24–27% increases in chloroplast sizes (diameter and thickness) in leaf cells. In a canopy of P. patens, the area-based photosynthesis rate (A canopy) was increased by 57% at 10g. The increase observed in A canopy was associated with greater plant numbers and chloroplast sizes, both of which involved enhanced CO2 diffusion from the atmosphere to chloroplasts in the canopies of P. patens. These results suggest that changes in gravity are important environmental stimuli to induce changes in plant growth and photosynthesis by P. patens, in which an alteration in chloroplast size is one of the key traits. We are now planning an ISS experiment to investigate the responses of P. patens to microgravity.

Keywords

Bryophyte Leaf CO2 diffusion Evolution Gametophore 

Notes

Acknowledgments

This work was supported by a Grant-in-Aid for Space Utilization by the Japan Aerospace Exploration Agency (to T.F. in Space Moss Project) and JSPS KAKENHI Grant Numbers JP21657011 and 15K11914. We appreciate Dr. Yosuke Onoda for his constructive comments concerning the effects of leaf anatomy on photosynthesis.

References

  1. Hangarter, R.P.: Gravity, light and plant form. Plant Cell Environ. 20, 796–800 (1997).  https://doi.org/10.1111/j.1365-3040.1997.tb00654.x CrossRefGoogle Scholar
  2. Hanson, D.T., Renzaglia, K., Villarreal, J.C.: Diffusion limitation and CO2 concentrating mechanisms in bryophytes. In: Hanson, T.D., Rice, K.S. (eds.) Photosynthesis in Bryophytes and Early Land Plants, pp. 95–111. Springer, Netherlands, Dordrecht (2014)Google Scholar
  3. Hirai, H., Kitaya, Y.: Effects of gravity on transpiration of plant leaves. Ann. N. Y. Acad. Sci. 1161, 166–172 (2009).  https://doi.org/10.1111/j.1749-6632.2009.04093.x CrossRefGoogle Scholar
  4. Hoson, T., Nishitani, K., Miyamoto, K., Ueda, J., Kamisaka, S., Yamamoto, R., Masuda, Y.: Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J. Exp. Bot. 47, 513–517 (1996).  https://doi.org/10.1093/jxb/47.4.513 CrossRefGoogle Scholar
  5. Hoson, T., Wakabayashi, K.: Role of the plant cell wall in gravity resistance. Phytochemistry 112, 84–90 (2015).  https://doi.org/10.1016/j.phytochem.2014.08.022 CrossRefGoogle Scholar
  6. Kawase, M., Hanba, Y.T., Katsuhara, M.: The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J. Plant Res. 126, 517–527 (2013).  https://doi.org/10.1007/s10265-013-0548-4 CrossRefGoogle Scholar
  7. Kern, V.D., Schwuchow, J.M., Reed, D.W., Nadeau, J.A., Lucas, J., Skripnikov, A., Sack, F.D.: Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221, 149–157 (2005).  https://doi.org/10.1007/s00425-004-1467-3 CrossRefGoogle Scholar
  8. Meyer, M., Seibt, U., Griffiths, H.: To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms. Phil. Trans. R. Soc. B 363, 2767–2778 (2008).  https://doi.org/10.1098/rstb.2008.0039 CrossRefGoogle Scholar
  9. Mori, A., Kamachi, H., Karahara, I., Kume, A., Hanba, Y.T., Takemura, K., Fujita, T.: Comparisons of the effects of vibration of two centrifugal systems on the growth and morphological parameters of the moss Physcomitrella patens. Biol. Sci. Space 31, 9–13 (2017).  https://doi.org/10.2187/bss.31.9 CrossRefGoogle Scholar
  10. Neef, M., Denn, T., Ecke, M., Hampp, R.: Intracellular calcium decreases upon hyper gravity-treatment of Arabidopsis thaliana cell cultures. Microgravity Sci. Technol. 28, 331–336 (2016).  https://doi.org/10.1007/s12217-015-9457-6 CrossRefGoogle Scholar
  11. Nishiyama, T., Hiwatashi, Y., Sakakibara, I., Kato, M., Hasebe, M.: Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res. 7, 9–17 (2000).  https://doi.org/10.1093/dnares/7.1.9 CrossRefGoogle Scholar
  12. Rubinstein, C.V., Gerrienne, P, de la Puente, G.S., Astini, R.A., Steemans, P.: Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol. 188, 365–369 (2010).  https://doi.org/10.1111/j.1469-8137.2010.03433.x CrossRefGoogle Scholar
  13. Schultz, E.R., Paul, A.-L., Ferl, R.J.: Root growth patterns and morphometric change based on the growth media. Microgravity Sci. Technol. 28, 621–631 (2016).  https://doi.org/10.1007/s12217-016-9514-9 CrossRefGoogle Scholar
  14. Soga, K., Harada, K., Wakabayashi, K., Hoson, T., Kamisaka, S.: Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions. J. Plant Res. 112, 273–278 (1999a).  https://doi.org/10.1007/PL00013881 CrossRefGoogle Scholar
  15. Soga, K., Wakabayashi, K., Hoson, T., Kamisaka, S.: Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls. Plant Cell Physiol. 40, 581–585 (1999b)CrossRefGoogle Scholar
  16. Soga, K., Wakabayashi, K., Hoson, T., Kamisaka, S.: Gravitational force regulates elongation growth of arabidopsis hypocotyls by modifying xyloglucan metabolism. Adv. Space Res. 27, 1011–1016 (2001).  https://doi.org/10.1016/S0273-1177(01)00176-4 CrossRefGoogle Scholar
  17. Soga, K., Wakabayashi, K., Kamisaka, S., Hoson, T.: Hypergravity induces reorientation of cortical microtubules and modifies growth anisotropy in azuki bean epicotyls. Planta 224, 1485–1494 (2006).  https://doi.org/10.1007/s00425-006-0319-8 CrossRefGoogle Scholar
  18. Takemura, K., Kamachi, H., Kume, A., Fujita, T., Karahara, I., Hanba, Y.T.: Hypergravity environment increases chloroplast sizes, photosynthesis and plant growth of the moss Physcomitrella patens. J. Plant Res. 130, 181–192 (2017)CrossRefGoogle Scholar
  19. Tamaoki, D., Karahara, I., Nishiuchi, T., Wakasugi, T., Yamada, K., Kamisaka, S.: Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems. J. Exp. Bot. 62, 5463–5469 (2011).  https://doi.org/10.1093/jxb/err224 CrossRefGoogle Scholar
  20. Terashima, I., Hanba, Y.T., Tholen, D., Niinemets, U.: Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 155, 108–116 (2011).  https://doi.org/10.1104/pp.110.165472 CrossRefGoogle Scholar
  21. Tosens, T., Nishida, K., Gago, J., Coopman, R.E., Cabrera, M., Carriqu, M., Laanisto, L., Morales, L., Nadal, M., Rojas, R., Talts, E., Tomas, M.: The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol. 209, 1576–1590 (2016).  https://doi.org/10.1111/nph.13719 CrossRefGoogle Scholar
  22. Waite, M., Sack, L.: How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol. 185, 156–172 (2010).  https://doi.org/10.1111/j.1469-8137.2009.03061.x CrossRefGoogle Scholar
  23. Waldron, K.W., Brett, C.T.: Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J. Exp. Bot. 41, 71–77 (1990)CrossRefGoogle Scholar
  24. Wang, H., Li, X., Krause, L., Görög, M., Schüler, O., Hauslage, J., Hemmersbach, R., Kircher, S., Lasok, H., Haser, T., Rapp, K., Schmidt, J., Yu, X., Pasternak, T., Aubry-Hivet, D., Tietz, O., Dovzhenko, A., Palme, K., Ditengou, F.A.: 2-D Clinostat for simulated microgravity experiments with Arabidopsis seedlings. Microgravity Sci. Technol. 28, 59–66 (2016).  https://doi.org/10.1007/s12217-015-9478-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Kaori Takemura
    • 1
  • Rina Watanabe
    • 1
  • Ryuji Kameishi
    • 1
  • Naoya Sakaguchi
    • 1
  • Hiroyuki Kamachi
    • 2
  • Atsushi Kume
    • 3
  • Ichirou Karahara
    • 2
  • Yuko T. Hanba
    • 1
    Email author
  • Tomomichi Fujita
    • 4
  1. 1.Department of Applied BiologyKyoto Institute of TechnologyKyotoJapan
  2. 2.Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
  3. 3.Faculty of AgricultureKyushu UniversityFukuokaJapan
  4. 4.Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations