Microgravity Science and Technology

, Volume 29, Issue 3, pp 241–249 | Cite as

Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity – Applicability in Bioregenerative Life Support Systems (BLSS)

  • Jessica Fischer
  • Kathrin Schoppmann
  • Christian Laforsch
Original Article


Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μg) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper-g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper-g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids’ unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μg. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.


CELSS Zooplankton Ostracoda Reproduction Mortality Food chain 



The authors acknowledge that this study forms a part of the Ph.D thesis of Jessica Fischer, who received a scholarship by the Helmholtz Space Life Sciences Research School (SpaceLife). Further financial support was provided by the German Aerospace Center (DLR, Grant No. 50WB1029) on behalf of the Bundesministerium für Wirtschaft und Technologie (BMWi) and the European Space Agency (ESA-GBF-program, contract No. 4000103571). The authors would like to thank M. Huber for determining of the thoracic beat frequency of D. magna and F. Scheller for measuring the duration the ostracods spent on food pieces. The ZARM Fab mbH team (Bremen, Germany), the Novespace team (Bordeaux, France), B. Trotter, B. Wolfschoon-Ribeiro, and R. Sigl provided excellent support during the drop tower and the parabolic flight experiments. The authors are grateful to PD Dr. R. Hemmersbach, PD Dr. R. Matzke-Karasz, I. Schrank, Q. Herzog, and L. Oehme for manuscript editing.


  1. Adell, T., Saló, E., van Loon, J.J.W.A., Auletta, G.: Planarians sense simulated microgravity and hypergravity. Biomed Res. Int. 2014 (2014)Google Scholar
  2. Alekseev, V., Sychev, V.N.: Effects of Space Station Conditions on Resting Egg Survivorship and Parameters of Life Cycle in D. Magna 36Th COSPAR Scientific Assembly, Beijing, China (2006)Google Scholar
  3. Amiard-Triquet, C., Rainbow, P.S., Romeo, M. (eds.): Tolerance to Environmental Contaminants. CRC Press (2011)Google Scholar
  4. Andersson, A., Nilsson, D.: Fine structure and optical properties of an ostracode (Crustacea) nauplius eye. Protoplasma 374, 361–374 (1981)CrossRefGoogle Scholar
  5. Baranov, V.M., Novikova, N.D., Polikarpov, N.A., Sychev, V.N., Levinskikh, M.A., Alekseev, V.R., Okuda, T., Sugimoto, M., Gusev, O.A., Grigor’ev, A.I.: The Biorisk experiment: 13-month exposure of resting forms of organism on the outer side of the Russian Segment of the International Space Station: Preliminary results. Dokl. Biol. Sci. 426, 267–270 (2009)CrossRefGoogle Scholar
  6. Benzie, J.A.H.: The Genus Daphnia (Including Daphniopsis):(Anomopoda, Daphniidae). Kenobi Productions, Ghent (2005)Google Scholar
  7. Blüm, V., Paris, F.: Possible applications of aquatic bioregenerative life support modules for food production in a martian base. Adv. Sp. Res. 31, 77–86 (2003)CrossRefGoogle Scholar
  8. Chial, B., Persoone, G.: Cyst-based toxicity tests XIV–application of the ostracod solid-phase microbiotest for toxicity monitoring of river sediments in Flander(s Belgium). Environ. Toxicol. 17, 533–7 (2002)CrossRefGoogle Scholar
  9. DIN EN ISO 6341:2013-01: Wasserbeschaffenheit - Bestimmung der Hemmung der Beweglichkeit von Daphnia magna Straus (Cladocera, Crustacea) - Akuter Toxizitäts-Test (2013)Google Scholar
  10. Directorate of Human Spaceflight and Operations: ESA User Guide to Low Gravity Platforms, HSO-K/MS/01/14, Issue 3 revision 0, Chapter 6 Sounding Rockets. pp. 1–32 (2014)Google Scholar
  11. Dodson, S.I., Ryan, S., Tollrian, R., Lampert, W.: Individual swimming behavior of Daphnia: effects of food, light and container size in four clones. J. Plankton Res. 19, 1537–1552 (1997)CrossRefGoogle Scholar
  12. Ebert, D.: Ecology, epidemiology, and evolution of parasitism in Daphnia [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available from: (2005)
  13. Fischer, J., Schoppmann, K., Knie, M., Laforsch, C.: Responses of microcrustaceans to simulated microgravity (2D-Clinorotation) - preliminary assessments for the development of bioregenerative life support systems (BLSS). Microgravity Sci. Technol. 28, 337–344 (2015)CrossRefGoogle Scholar
  14. Fryer, G.: Functional morphology and the adaptive radiation of the daphniidae (branchiopoda: Anomopoda). Philos. Trans. R. Soc. B Biol. Sci. 331, 1–99 (1991)CrossRefGoogle Scholar
  15. Ganning, B.: On the ecology of Heterocypris salinus, H. incongruens and Cypridopsis aculeata (Crustacea: Ostracoda) from Baltic brackish-water rockpools. Mar. Biol. 8, 271–279 (1971)CrossRefGoogle Scholar
  16. Golder, D., Rana, S., Paria, D.S., Jana, B.B.: Human urine is an excellent liquid waste for the culture of fish food organism, Moina micrura. Ecol. Eng. 30, 326–332 (2007)CrossRefGoogle Scholar
  17. Gonzales, J.M., Brown, P.B.: Nile tilapia Oreochromis niloticus as a food source in advanced life support systems: Initial considerations. Adv. Sp. Res. 38, 1132–1137 (2006)CrossRefGoogle Scholar
  18. Goździejewska, A., Tucholski, S.: Zooplankton of fish culture ponds periodically fed with treated wastewater. Pol. J. Environ. Stud. 20, 67–79 (2011)Google Scholar
  19. Grant, I.F., Egan, E.A., Alexander, M.: Measurement of rates of grazing of the ostracod Cyprinotus carolinensis on blue-green algae. Hydrobiologia 106, 199–208 (1983)CrossRefGoogle Scholar
  20. Häder, D.-P.D., Richter, P., Lebert, M.: Signal transduction in gravisensing of flagellates. Signal Transduct. 6, 422–431 (2006)CrossRefGoogle Scholar
  21. Ijiri, K.: Medaka fish had the honor to perform the first successful vertebrate mating in space. Fish Biol. J. Medaka. 7, 1–10 (1995)Google Scholar
  22. Ijiri, K., Mizuno, R., Narita, T., Ohmura, T., Ishikawa, Y., Yamashita, M., Anderson, G., Poynter, J., MacCallum, T.: Behavior and reproduction of invertebrate animals during and after a long-term microgravity: space experiments using an Autonomous Biological System (ABS). Biol. Sci. Space. 12, 377–388 (1998)CrossRefGoogle Scholar
  23. Ishikawa, Y., Kobayashi, K., Mizutani, H., Kawasaki, Y., Koike, J., Ijiri, K., Yamashita, M., Sugiura, K., Poynter, J., Maccallum, T., Others, Anderson, G.: Concluding remarks of autonomous biological systems (ABS) experiments. Biol. Sci. Sp. 12, 394–399 (1998)CrossRefGoogle Scholar
  24. Jander, R.: Ecological aspects of spatial orientation. Annu. Rev. Ecol. Syst. 171–188 (1975a)Google Scholar
  25. Jander, R.: Interaction of light and gravity orientation in Daphnia pulex Fortschritte der Zoologie, pp 174–84 (1975b)Google Scholar
  26. Jeschke, J.M., Tollrian, R.: Density-dependent effects of prey defences. Oecologia 123, 391–396 (2000)CrossRefGoogle Scholar
  27. Kirk, K.L.: Suspended clay reduces Daphnia feeding rate. Freshw. Biol. 25, 357–365 (1991)CrossRefGoogle Scholar
  28. Lampert, W.: Feeding and Nutrition in Daphnia. In: Peters, R.H., de Bernardi, R. (eds.) Daphnia. pp. 143–192. Memorie Dell’istituto Italiano Di Idrobiologia 45, Pallanza, Italy (1987)Google Scholar
  29. Lampert, W.: Daphnia: model herbivore, predator and prey. Pol. J. Ecol. 54, 607–620 (2006)Google Scholar
  30. Marthy, H.-J.: Microgravity and Development of Aquatic Animals ESA, Fourth European Symposium on Life Sciences Research in Space, pp 255–257 (1990)Google Scholar
  31. McMahon, J.W., Rigler, F.H.: Mechanisms Regulating the Feeding Rate of Daphnia magna Straus. Can. J. Zool. 41, 321–332 (1963)CrossRefGoogle Scholar
  32. Meisch, C.: Freshwater Ostracoda of Western and Central Europe. In: Schwoerbel, J., Zwick, P. (eds.) Süßwasserfauna Von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg, Berlin (2000)Google Scholar
  33. Miličić, D.M., Majstorović, A.P., Pavković-Lučić, S.B., Savić, T.T.: Behaviour and food selection of Heterocypris incongruens (Ostracoda). Crustaceana 88, 1097–1110 (2015)CrossRefGoogle Scholar
  34. Neale, J.W.: Some factors influencing the distribution of Recent British Ostracoda. Pubbl. Stn. Zool. Napoli II 33, 247–307 (1964)Google Scholar
  35. Niihori, M., Mogami, Y., Naruse, K., Baba, S.A.: Development and swimming behavior of Medaka fry in a spaceflight aboard the Space Shuttle Columbia (STS-107). Zoolog. Sci. 21, 923–931 (2004)CrossRefGoogle Scholar
  36. Niihori, M., Poynter, J., Nelson, S. G., Mogami, Y.: Small-package Life Support Ecological System for Long-lasting Space Experiment: Feasibility Studies on the Application to Fish Experiments. J. Japan Soc. Microgravity Appl. 24, 320–324 (2007)Google Scholar
  37. Novikova, N., Gusev, O., Polikarpov, N., Deshevaya, E., Levinskikh, M., Alekseev, V., Okuda, T., Sugimoto, M., Sychev, V. N., Grigoriev, A.: Survival of dormant organisms after long-term exposure to the space environment. Acta Astronaut. 68, 1574–1580 (2011)CrossRefGoogle Scholar
  38. OECD: Guidline for Testing Chemicals: 202 Daphnia sp., Acute Immobilisation Test and Reproduction Test (1984)Google Scholar
  39. OECD: Guidline For Testing Chemicals: 211 Daphnia magna Reproduction Test 1–21 (1998)Google Scholar
  40. Oleszczuk, P.: The evaluation of sewage sludge and compost toxicity to Heterocypris incongruens in relation to inorganic and organic contaminants content. Environ. Toxicol. 22, 587–596 (2007)CrossRefGoogle Scholar
  41. Oleszczuk, P.: Heterocypris incongruens as a tool to estimate sewage sludge toxicity. Environ. Toxicol. Chem. 27, 864–72 (2008)CrossRefGoogle Scholar
  42. Omori, K., Oguchi, M., Takeuchi, T.: Development of zooplankton culture subsystem for a closed ecological recirculating aquaculture system (CERAS). Acta Astronaut. 58, 82–87 (2006)CrossRefGoogle Scholar
  43. Porter, K. G., Gerritsen, J., Orcutt, J.D.: The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia. Limnol. Oceanogr. 27, 935–949 (1982)CrossRefGoogle Scholar
  44. Ricci, C., Caprioli, M., Villa, A.: Microgravity and hypergravity effect on survival and reproduction of microinvertebrates. J. Gravit. Physiol. 5, P125–6 (1998)Google Scholar
  45. Rossi, V., Benassi, G., Belletti, F., Menozzi, P.: Colonization, population dynamics, predatory behaviour and cannibalism in Heterocypris incongruens (Crustacea: Ostracoda). J. Limnol. 70, 102–108 (2011)CrossRefGoogle Scholar
  46. Rossi, V., Gandolfi, A., Menozzi, P.: Egg diapause and clonal structure in parthenogenetic populations of Heterocypris incongruens (Ostracoda). Hydrobiologia. 320, 45–54 (1996)CrossRefGoogle Scholar
  47. Ruyters, G., Friedrich, U.: From the Bremen Drop Tower to the international space station ISS - Ways to weightlessness in the German Space Life Sciences Program. Signal Transduct. 6, 397–405 (2006)CrossRefGoogle Scholar
  48. Schembri, P. J.: Locomotion, feeding, grooming and the behavioural responses to gravity, light and hydrostatic pressure in the stage I zoea larvae of Ebalia tuberosa (Crustacea: Decapoda: Leucosiidae). Mar. Biol. 72, 125–134 (1982)CrossRefGoogle Scholar
  49. Schmit, O., Rossetti, G., Vandekerkhove, J., Mezquita, F.: Food selection in Eucypris virens (Crustacea: Ostracoda) under experimental conditions. Hydrobiologia 585, 135–140 (2007)CrossRefGoogle Scholar
  50. Schultz, T. W.: The fine structure of the Ephippium of Daphnia pulex (Crustacea: Cladocera). Trans. Am. Microsc. Soc. 96, 313–321 (1977)CrossRefGoogle Scholar
  51. Schwartzkopf, S. H.: Design of a controlled ecological life support system. Bioscience 42, 526–535 (1992)CrossRefGoogle Scholar
  52. Sychev, V. N., Levinskikh, M.A., Shepelev, Y.Y.: The biological component of the life support system for a martian expedition. Adv. Sp. Res. 31, 1693–1698 (2003)CrossRefGoogle Scholar
  53. Sychev, V. N., Levinskikh, M. A., Podolsky, I. G.: Biological component of life support systems for a crew in long-duration space expeditions. Acta Astronaut. 63, 1119–1125 (2008)CrossRefGoogle Scholar
  54. Vannier, J., Abe, K., Ikuta, K.: Feeding in myodocopid ostracods: functional morphology and laboratory observations from videos. Mar. Biol. 132, 391–408 (1998)CrossRefGoogle Scholar
  55. Von Beckh, H.J.A.: Experiments with Animals and Human Subjects under Sub- and Zero-gravity Conditions during the Dive and Parabolic Flight. J. Aviat. Med. 25, 235–241 (1954)Google Scholar
  56. von Kampen, P., Kaczmarczik, U., Rath, H.J.: The new Drop Tower catapult system. Acta Astronaut. 59, 278–283 (2006)CrossRefGoogle Scholar
  57. Wagner, I., Braun, M., Slenzka, K., Posten, C.: Photobioreactors in Life Support Systems. In: Posten, C., Feng Chen, S. (eds.) Microalgae Biotechnology, pp 143–184. Springer International Publishing, Cham (2016)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jessica Fischer
    • 1
    • 2
    • 3
  • Kathrin Schoppmann
    • 1
    • 3
  • Christian Laforsch
    • 1
    • 3
  1. 1.Animal Ecology IUniversity of BayreuthBayreuthGermany
  2. 2.German Aerospace Center (DLR)Institute of Aerospace Medicine, Gravitational BiologyCologneGermany
  3. 3.Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany

Personalised recommendations