Advertisement

Microgravity Science and Technology

, Volume 29, Issue 1–2, pp 37–48 | Cite as

Miniaturized Lab System for Future Cold Atom Experiments in Microgravity

  • Sascha Kulas
  • Christian Vogt
  • Andreas Resch
  • Jonas Hartwig
  • Sven Ganske
  • Jonas Matthias
  • Dennis Schlippert
  • Thijs Wendrich
  • Wolfgang Ertmer
  • Ernst Maria Rasel
  • Marcin Damjanic
  • Peter Weßels
  • Anja Kohfeldt
  • Erdenetsetseg Luvsandamdin
  • Max Schiemangk
  • Christoph Grzeschik
  • Markus Krutzik
  • Andreas Wicht
  • Achim Peters
  • Sven Herrmann
  • Claus Lämmerzahl
Original Article

Abstract

We present the technical realization of a compact system for performing experiments with cold 87Rb and 39K atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low μK regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub- μK temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an optical dipole trap. A first test in microgravity, including the creation of a cold Rb ensemble, shows the functionality of the system.

Keywords

Atom interferometry Microgravity Equivalence principle Fundamental physics 

Notes

Acknowledgments

We acknowledge support by the German Space Agency DLR with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant number DLR 50 WM 1142.

References

  1. Aguilera, D.N., et al.: STE-QUEST–test of the universality 587 of free fall using cold atom interferometry. Classical Quantum Gravity 115010, 31 (2014)Google Scholar
  2. Altschul, B., et al.: Quantum tests of the Einstein Equivalence Principle with the STE-QUEST space mission. Adv. Space Research 55, 501–524 (2015)CrossRefGoogle Scholar
  3. Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F., Biraben, F.: State of the art in the determination of the fine structure constant: test of quantum electrodynamics and determination of h/mu. Annalen der Physik 525, 484–492 (2013)CrossRefGoogle Scholar
  4. Clairon, A., Salomon, C., Guellati, S., Phillips, W.D.: Ramsey resonance in a zacharias fountain. Europhys. Lett. 16, 165–170 (1991)CrossRefGoogle Scholar
  5. Clément, J.-F., Brantut, J.-P., Robert-de-Saint-Vincent, M., Nyman, R.A., Aspect, A., Bourdel, T., Bouyer, P.: All-optical runaway evaporation to Bose-Einstein condensation. Phys. Rev. A 061406, 79 (2009)Google Scholar
  6. Davisson, C., Germer, L.H.: Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705 (1927)CrossRefGoogle Scholar
  7. de Broglie, L.: A tentative theory of light quanta. Phil. Mag. 47, 446 (1924)CrossRefGoogle Scholar
  8. Dieckmann, K., Spreeuw, R.J.C., Weidemüller, M., Walraven, J.T.M.: Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891 (1998)CrossRefGoogle Scholar
  9. Fattori, M., D’Errico, C., Roati, G., Zaccanti, M., Jona-Lasinio, M., Modugno, M., Inguscio, M., Modugno, G.: Atom interferometry with a weakly interacting Bose-Einstein condensate. Phys. Rev. Lett. 080405, 100 (2008)Google Scholar
  10. Geiger, R., et al.: Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011)CrossRefGoogle Scholar
  11. Gouet, J.L.E, Mehlstübler, T.E., Kim, J., Merlet, S., Clairon, A., Landragin, A., Pereira Dos Santos, F.: Limits to the sensitivity of a low noise compact atomic gravimeter. Appl. Phys. B 92, 133–144 (2008)CrossRefGoogle Scholar
  12. Han, D.J., DePue, M.T., Weiss, D.S.: Loading and compressing Cs atoms in a very far-off-resonant light trap. Phys. Rev. A 023405, 63 (2001)Google Scholar
  13. Jönsson, C.: Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Zeitschrift für Physik 161, 454 (1961)CrossRefGoogle Scholar
  14. Kasevich, M.A., Chu, S.: Measurement of the gravitational acceleration of an atom with a Light-Pulse atom interferometer. Appl. Phys. B 54, 321–332 (1992)CrossRefGoogle Scholar
  15. Könemann, T., et al.: A freely falling magneto-optical trap drop tower experiment. Appl. Phys. B 89, 431–438 (2007)CrossRefGoogle Scholar
  16. Lamporesi, G., Bertoldi, A., Cacciapuoti, L., Prevedelli, M., Tino, G.M.: Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 050801, 100 (2008)Google Scholar
  17. Landini, M., Roy, S., Carcagní, L., Trypogeorgos, D., Fattori, M., Inguscio, M., Modugno, G.: Sub-Doppler laser cooling of potassium atoms. Phys. Rev. A 043432, 84 (2011)Google Scholar
  18. Luvsandamdin, E., Kürbis, Ch., Schiemangk, M., Sahm, A., Wicht, A., Peters, A., Erbert, G., Tränkle, G.: Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express 22, 7790 (2014)CrossRefGoogle Scholar
  19. Müntinga, H., et al.: Interferometry with bose-einstein condensates in microgravity. Phys. Rev. Lett. 093602, 110 (2013)Google Scholar
  20. Riehle, F., Kisters, T., Witte, A., Helmcke, J., Bordé, C.J.: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177 (1991)CrossRefGoogle Scholar
  21. Roati, G., Zaccanti, M., D’Errico, C., Catani, J., Modugno, M., Simoni, A., Inguscio, M., Modugno, G.: K 39 Bose-Einstein condensate with tunable interactions. Phys. Rev. Lett. 010403, 99 (2007)Google Scholar
  22. Schiemangk, M., Lampmann, K., Dinkelaker, A., Kohfeldt, A., Krutzik, M., Kürbis, C., Sahm, A., SpieSSberger, S., Wicht, A., Erbert, G., Tränkle, G., Peters, A.: High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments. Appl. Opt. 54, 5332–5338 (2015)CrossRefGoogle Scholar
  23. Schlippert, D., Hartwig, J., Albers, H., Richardson, L.L., Schubert, C., Roura, A., Schleich, W.P., Ertmer, W., Rasel, E.M.: Quantum test of the universality of free fall. Phys. Rev. Lett. 203002, 112 (2014)Google Scholar
  24. Seidel, S.T., Gaaloul, N., Rasel, E.M.: MAIUS - A Rocket-Born test of an atom interferometer with a Chip-Based atom laser, vol. 2012, p 801 (2013)Google Scholar
  25. Wicht, A., Hensley, J.M., Sarajlic, E., Chu, S.: A preliminary measurement of the fine structure constant based on atom interferometry. Phys. Scr. T102, 82–88 (2002)CrossRefGoogle Scholar
  26. Zaiser, M., Hartwig, J., Schlippert, D., Velte, U., Winter, N., Lebedev, V., Ertmer, W., Rasel, E.M.: Simple method for generating Bose-Einstein condensates in a weak hybrid trap. Phys. Rev. A 035601, 83 (2011)Google Scholar
  27. Zhou, L., Long, S., Tang, B., Chen, X., Gao, F., Peng, W., Duan, W., Zhong, J., Xiong, Z., Wang, J., Zhang, Y., Zhan, M.: Test of Equivalence Principle at 10−8 Level by a Dual-species Double-diffraction Raman Atom Interferometer. Phys. Rev. Lett. 013004, 115 (2015)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sascha Kulas
    • 1
  • Christian Vogt
    • 1
  • Andreas Resch
    • 1
  • Jonas Hartwig
    • 2
  • Sven Ganske
    • 2
  • Jonas Matthias
    • 2
  • Dennis Schlippert
    • 2
  • Thijs Wendrich
    • 2
  • Wolfgang Ertmer
    • 2
  • Ernst Maria Rasel
    • 2
  • Marcin Damjanic
    • 5
  • Peter Weßels
    • 5
  • Anja Kohfeldt
    • 4
  • Erdenetsetseg Luvsandamdin
    • 4
  • Max Schiemangk
    • 3
    • 4
  • Christoph Grzeschik
    • 3
  • Markus Krutzik
    • 3
  • Andreas Wicht
    • 3
    • 4
  • Achim Peters
    • 3
    • 4
  • Sven Herrmann
    • 1
  • Claus Lämmerzahl
    • 1
  1. 1.ZARMUniversität BremenBremenGermany
  2. 2.Institut für Quantenoptik and Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität HannoverHannoverGermany
  3. 3.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Ferdinand-Braun-InstitutLeibniz-Institut für HöchstfrequenztechnikBerlinGermany
  5. 5.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations