Advertisement

Microgravity Science and Technology

, Volume 28, Issue 6, pp 587–601 | Cite as

The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

  • Vladimir Pletser
  • Sebastien Rouquette
  • Ulrike Friedrich
  • Jean-Francois Clervoy
  • Thierry Gharib
  • Frederic Gai
  • Christophe Mora
Original Article
Part of the following topical collections:
  1. Advances in gravity-related phenomena in biological, chemical and physical systems

Abstract

Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ’Centre National d’Etudes Spatiales’ (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ‘Deutsches Zentrum für Luft- und Raumfahrt e.V.’ (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

Keywords

Aircraft parabolic flights Microgravity experiments A310 ZERO-G International cooperation 

References

  1. Callens, N., Ventura-Traveset, J., De Lophem, T.L., Lopez De Echazarreta, C., Pletser, V., Van Loon, J.: ESA Parabolic flights, drop tower and centrifuge opportunities for university students. Microgravity Sci. Technol. 23-2, 181–189 (2011). http://www.springerlink.com/content/p32353422p1120n5/fulltext.pdf
  2. Demertzi, A., Van Ombergen, A., Tomilovskaya, E., Jeurissen, B., Pechenkova, E., Di Perri, C., Litvinova, L., Amico, E., Rumshiskaya, A., Rukavishnikov, I., Sijbers, J., Sinitsyn, V., Kozlovskaya, I.B., Sunaert, S., Parizel, P.M., Van de Heyning, P.H., Laureys, S.S.L., Wuyts, F.L.: Cortical reorganization in an astronaut’s brain after long-duration spaceflight, Brain Structure and Function, pp. 1-4. (2015). doi: 10.1007/s00429-015-1054-3
  3. Geiger, R., Ménoret, V., Stern, G., Zahzam, N., Cheinet, P., Battelier, B., Villing, A., Moron, F., Lours, M., Bidel, Y., Bresson, A., Landragin, A., Bouyer, P.: Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011). doi: 10.1038/ncomms1479
  4. Hametner, B., Heusser, K., Moestl, S., Gauger, P., Limper, U., Wassertheurer, S., Tank, J.: Wave reflection, assessed by pulse wave separation, is reduced under acute -g conditions in parabolic flight. Poster presented at Joint Life Science meeting, Toulouse (2016)Google Scholar
  5. Kothe, S., Blum, J., Weidling, R., Güttler, C.: Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates. Icarus 225, 75–85 (2013)CrossRefGoogle Scholar
  6. Kothe, S.: Mikrogravitationsexperimente Zur Entwicklung Eines Empirischen Stoßmodells Für Protoplanetare Staubagglomerate, Ph.D. Thesis, Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig (2016)Google Scholar
  7. Ménoret, V., Geiger, R., Stern, G., Zahzam, N., Battelier, B., Bresson, A., Landragin, A., Bouyer, P.: Dual-wavelength laser source for onboard atom interferometry. Opt. Lett. 36(21), 4128–4130 (2011)CrossRefGoogle Scholar
  8. Moestl, S.: Development, Verification and practical application of a signal analysis program for determining systolic time intervals in parabolic flight. Master thesis, university of applied sciences aachen, DLR, Cologne (2016)Google Scholar
  9. Novespace document: Experiment Design Guidelines in Parabolic Flight, Ref. GDL-2014-6 . http://www.novespace.fr/en,vol.html (2014)
  10. Novespace document: Experiment Design Requirements in Parabolic Flight, Ref. RQ-2015-03. http://www.novespace.fr/en,vol.html (2015a)
  11. Novespace document: A310 ZERO-G Interfaces Document, Ref. ITF-2015-1. http://www.novespace.fr/en,vol.html(2015b)
  12. Pletser, V., Paulis, P.E., Loosveldt, E., Gering, D., Body, M., Schewijck, R.: A new ESA educational initiative: Euro Space Center class teachers in microgravity during parabolic flights. Acta Astronautica, 57- 12, 910–919 (2005). http://www.sciencedirect.com/science/article/pii/S0094576505001943
  13. Pletser, V., Pacros, A., Minster, O.: The ESA Parabolic Flight Programme for Physical Sciences, 3rd Int. Symp. Physical Sciences in Space (ISPS). Nara J. Japan Soc. of Microgravity Appl. 25-3, 635–640 (2008)Google Scholar
  14. Pletser, V., Winter, J., Duclos, F., Friedrich, U., Clervoy, J.F., Gharib, T., Gai, F., Minster, O., Sundblad, P.: The first Joint European Partial-g Parabolic Flight Campaign at Moon and Mars gravity levels for science and exploration. Microgravity Sci. Technol., special Issue ELGRA 2011(24–6), 383–395 (2012)CrossRefGoogle Scholar
  15. Pletser, V., Rouquette, S., Friedrich, U., Clervoy, J.F., Gharib, T., Gai, F., Mora, C.: European parabolic flight campaigns with Airbus A300 ZERO-g: looking back at the A300 and looking forward to the A310. Adv. Space Res., 1003–1013 (2015). doi: 10.1016/j.asr.2015.05.022
  16. Renard, J. -B., Hadamcik, E., Couté, B., Jeannot, M., Levasseur-Regourd, A.C.: Wavelength dependence of linear polarization in the visible and near infrared domain for large levitating grains (PROGRA2 instruments). J. Quant. Spectrosc. Radiat. Transf. 146, 424–430 (2014)CrossRefGoogle Scholar
  17. Schneider, S., Brümmer, V., Carnahan, H., Dubrowski, A., Askew, C.D., Stü, der, H.K.: What happens to the brain in weightlessness? A first approach by EEG tomography. Neurolmage 42(4), 1316–1323 (2008a). doi: 10.1016/j.neuroimage.2008.06.010
  18. Schneider, S., Brümmer, V., Mierau, A.V., Carnahan, H., Dubrowski, A., Stüder, H.K.: Increased brain cortical activity during parabolic flights has no influence on a motor tracking task. Exp. Brain Res. 185(4), 571–579 (2008b). doi: 10.1007/s00221-007-1187-6
  19. Sieber, M., Kaltenbach, S., Hanke, W., Kohn, F.P.M.: Conductance and capacity of plain lipid membranes under conditions of variable gravity, Journal of Biomedical Science and Engineering, (in press) (2016)Google Scholar
  20. Teiser, J., Schywek, M., de Beule, C., Wurm, G.: Sub-surface gas flow in porous bodies, American Astronomical Society, DPS meeting #,47, id.420.04. http://adsabs.harvard.edu/abs/2015DPS....4742004T (2015)
  21. Van Ombergen, A., Jeurissen, B., Demertzi, A., Heine, L., Sinitsyn, V., Mershina, E., Pechenkova, E., Sunaert, S., Laureys, S., Kozlovskaya, I., Tomilovskaya, E., Sijbers, J., Parizel, P.M., Loeckx, D., Van de Heyning, P.H., Morukov, B.V., Choukèr, A., Lutz, J., Schelling, G., Wuyts, F.L.: Neuroplasticity in Astronauts Studied with Novel MRI Methods: Preliminary Results of the BRIAN DTI Project. Presented at the 19th IAA Humans in Space Symposium, Cologne, Germany (2013)Google Scholar
  22. Weidling, R., Güttler, C., Blum, J.: Free collisions in a microgravity Many-Particle experiment. i. Dust aggregate sticking at low velocities. Icarus 218, 688–700 (2012)CrossRefGoogle Scholar
  23. Wollseiffen, P., Vogt, T., Abeln, V., Strüder, H. K., Askew, C.D., Schneider, S.: Neuro-cognitive performance is enhanced during short periods of microgravity. Physiol. Behav. 155, 9–16 (2016). doi: 10.1016/j.physbeh.2015.11.036

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Microgravity Payloads and Platforms Division, Sciences DepartmentHuman Space Flight and Robotic Exploration Directorate, ESA-ESTEC, HRE-UNPAG NoordwijkThe Netherlands
  2. 2.Microgravity Experiments OfficeToulouse Center Directorate, CNESToulouse Cedex 9France
  3. 3.Research under Space Conditions, German Space AgencyDeutsches Zentrum für Luft- und Raumfahrt e.V./German Aerospace Center DLRBonnGermany
  4. 4.NovespaceBordeaux – MérignacFrance

Personalised recommendations