Microgravity Science and Technology

, Volume 28, Issue 5, pp 545–552 | Cite as

Mass Diffusion and Thermal Diffusivity of the Decane-pentane Mixture Under High Pressure as a Ground-based Study for SCCO Project

  • Ion Lizarraga
  • Cédric Giraudet
  • Fabrizio Croccolo
  • M. Mounir Bou-Ali
  • Henri Bataller
Original Article


Thermodiffusion experiments on isomassic binary mixture of decane and pentane in the liquid phase have been performed between 25 C and 50 C and for pressures from 1MPa until 20MPa. By dynamic analysis of the light scattered by concentration non-equilibrium fluctuations in the binary mixture we obtained the mass diffusion coefficients of the mixture at each temperature and pressure. For the first time we were able to apply similar analysis to thermal fluctuations thus getting a simultaneous measurement of the thermal diffusivity coefficient. While mass diffusion coefficients decrease linearly with the pressure, thermal diffusivity coefficients increase linearly. In principle the proposed method can be used also for measuring the Soret coefficients at the same time. However, for the present mixture the intensity of the optical signal is limited by the optical contrast factor. This affects our capability of providing a reliable estimate of the Soret coefficient by means of dynamic Shadowgraph. Therefore the mass diffusion coefficients measurements would need to be combined with independent measurements of the thermodiffusion coefficients, e.g. thermogravitational column, to provide Soret coefficients. The obtained values constitute the on-ground reference measurements for one of the mixture studied in the frame of the project SCCO-SJ10, which aims to measure the Soret coefficients of multicomponents mixtures under reservoir conditions. Microgravity experiments will be performed on the Chinese satellite SJ10 launched in April 2016.


Mass diffusion Thermal diffusivity Decane-pentane mixture Non-equilibrium fluctuations High pressure SCCO SJ10 



This work has been supported by the European Space Agency through the SCCO project. Support from the French space agency CNES is also acknowledged. We thank TOTAL S.A. for allowing the use of the BEST software and Research Groups (No. IT1009-16) and TERDISOMEZ (No. FIS2014-58950-C2-1-P) of MINECO.


  1. Alonso de Mesquia, D., Bou-Ali, M.M., Larrañage, M., Madariaga, J.A., Santamaria, C.: Determination of molecular diffusion coefficient in n-alkane binary mixtures: Empirical correlations. J. Phys. Chem. B 116, 2814–2819 (2012)CrossRefGoogle Scholar
  2. Assael, M.J., Goodwin, A.R.H., Vesovic, V., Wakeham, W.A.: Experimental thermodynamics volume IX: advances in transport properties of fluids. Royal Society of Chemistry, London (2014)CrossRefGoogle Scholar
  3. Bou-Ali, M.M., Ahadi, A., Alonso de Mezquia, D., Galand, Q., Gebhardt, M., Khlybov, O., Köhler, W., Larrañaga, M., Legros, J.C., Lyubimova, T., Mialdun, A., Ryzhkov, I., Saghir, M.Z., Shevtsova, V., Van Vaerenbergh, S.: Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin + isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction. Eur. Phys. J. E 38, 30 (2015)CrossRefGoogle Scholar
  4. Cerchiari, G., Croccolo, F., Cardinaux, F., Scheffold, F.: Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit. Rev. Sci. Instrum. 83, 106101 (2012)CrossRefGoogle Scholar
  5. Croccolo, F., Brogioli, D., Vailati, A., Giglio, M., Cannell, D.S.: Use of the dynamic Schlieren to study fluctuations during free diffusion. App. Opt. 45, 2166–2173 (2006a)Google Scholar
  6. Croccolo, F., Brogioli, D., Vailati, A., Giglio, M., Cannell, D.S.: Effect of gravity on the dynamics of non equilibrium fluctuations in a free diffusion experiment. Ann. N. Y. Acad. Sci. 1077, 365 (2006b)Google Scholar
  7. Croccolo, F., Brogioli, D., Vailati, A., Giglio, M., Cannell, D.S.: Non-diffusive decay of gradient driven fluctuations in a free-diffusion process. Phys. Rev. E 76, 41112 (2007)CrossRefGoogle Scholar
  8. Croccolo, F., Brogioli, D.: Quantitative Fourier analysis of schlieren masks: the transition from shadowgraph to schlieren. App. Opt. 50, 3419–3427 (2011)CrossRefGoogle Scholar
  9. Croccolo, F., Bataller, H., Scheffold, F.: A light scattering study of non equilibrium fluctuations in liquid mixtures to measure the Soret and mass diffusion coefficient. J. Chem. Phys. 137, 234202 (2012)CrossRefGoogle Scholar
  10. Croccolo, F., Bataller, H., Scheffold, F.: Static versus dynamic analysis of the influence of gravity on concentration non equilibrium fluctuations. Eur. Phys. J. E 37, 105 (2014)CrossRefGoogle Scholar
  11. De Groot, S.R., Mazur, P: Nonequilibrium Thermodynamics. Dover, New York (1984)Google Scholar
  12. Firoozabadi, A., Ghorayeb, K., Shukla, K.: Theoretical model of thermal diffusion factors in multicomponent mixtures. AIChE J. 46, 892–900 (2000)CrossRefGoogle Scholar
  13. Galliero, G., Duguay, B., Caltagirone, J.P., Montel, F.: On thermal diffusion in binary and ternary mixtures by non-equilibrium molecular dynamics. Phil. Mag. 83, 2097–2108 (2003)CrossRefGoogle Scholar
  14. Galliero, G., Montel, F.: Understanding compositional grading in petroleum reservoirs thanks to molecular simulations, p 121902. Society of Petroleum Engineers Paper, Amsterdam (2009)Google Scholar
  15. Galliero, G., Bataller, H., Croccolo, F., Vermorel, R., Artola, P.-A., Rousseau, B., Vesovic, V., Bou-Ali, M., Ortiz de Zárate, J.M., Xu, S., Zhang, K., Montel, F.: Impact of Thermodiffusion on the initial distribution of Species in hydrocarbon reservoirs. Microgravity Sci. Technol. 28, 79–86 (2016)Google Scholar
  16. Gebhardt, M., Köhler, W.: Soret, thermodiffusion, and mean diffusion coefficients of the ternary mixture ndodecane + isobutylbenzene+1,2,3,4 tetrahydronaphthalene. J. Chem. Phys. 143, 164511 (2015)CrossRefGoogle Scholar
  17. Georis, P., Montel, F., Van Vaerenbergh, S., Decoly, Y., Legros, J.C.: Proc. Eur. Pet. Conf. 1, 57–62 (1998)Google Scholar
  18. Ghorayeb, K., Firoozabadi, A., Anraku, T.: Interpretation on the unusual fluid distribution in the Yufutsu gas-condensate field. SPE J. 8, 114–123 (2003)CrossRefGoogle Scholar
  19. Giraudet, C., Bataller, H., Croccolo, F.: High-pressure mass transport properties measured by dynamic near-field scattering of non-equilibrium fluctuations. Eur. Phys. J. E 37, 107 (2014)CrossRefGoogle Scholar
  20. Høier, L., Whitson, C.H.: Compositional grading-theory and Practice. SPE Reserv. Eval. Eng. 4, 525–532 (2001)CrossRefGoogle Scholar
  21. Kempers, L. J.T.M.: A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 115, 6330–6341 (2001)CrossRefGoogle Scholar
  22. Larrañaga, M., Bou-Ali, M., Lizarraga, I., Madariaga, J.A., Santamaría, S.: Soret Coefficients of the Ternary Mixture 1,2,3,4-Tetrahydronaphthalene + Isobutylbenzene + N-Dodecane. J. Chem. Phys. 143, 024202 (2015)CrossRefGoogle Scholar
  23. Leahy-Dios, A., Bou-Ali, M.M., Platten, J.K., Firoozabadi, A.: Measurements of molecular and thermal diffusion coefficients in ternary mixtures. J. Chem. Phys. 122, 234502 (2005)CrossRefGoogle Scholar
  24. Lira-Galeana, C., Firoozabadi, A., Prausnitz, J.M.: Computation of compositional grading in hydrocarbon reservoirs. Application of continuous thermodynamics. Fluid Phase Equilib. 102, 143–158 (1994)CrossRefGoogle Scholar
  25. Montel, F., Bickert, J., Lagisquet, A., Galliero, G.: Initial state of petroleum reservoirs: a comprehensive approach. J. Pet. Sci. Eng. 58, 391–402 (2007)CrossRefGoogle Scholar
  26. Ortiz de Zárate, J.M., Sengers, J.V.: Hydrodynamic fluctuations in fluids and fluid mixtures. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  27. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)CrossRefGoogle Scholar
  28. Srinivasan, S., Saghir, M.Z.: Measurements on thermodiffusion in ternary hydrocarbon mixtures at high pressure. J. Chem. Phys. 131, 124508 (2009)CrossRefGoogle Scholar
  29. Trainoff, S.P., Cannell, D.S.: Physical optics treatment of the shadowgraph. Phys. Fluids 14, 1340–1363 (2002)CrossRefMATHGoogle Scholar
  30. Touzet, M., Galliero, G., Lazzeri, V., Saghir, M.Z., Montel, F., Legros, J.C.: Thermodiffusion: from microgravity experiments to the initial state of petroleum reservoirs. Comptes Rendus - Mécanique 339, 318–323 (2011)CrossRefGoogle Scholar
  31. VanVaerenbergh, S., Srinivasan, S., Saghir, M.Z.: Thermodiffusion in multicomponent hydrocarbon mixtures: Experimental investigations and computational analysis. J. Chem. Phys. 131, 114505 (2009)CrossRefGoogle Scholar
  32. Wu, M., Ahlers, G., Cannell, D.S.: Thermally induced fluctuations below the onset of the Rayleigh-Bénard convection. Phys. Rev. Lett. 75, 17432–1746 (1995)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ion Lizarraga
    • 1
  • Cédric Giraudet
    • 2
  • Fabrizio Croccolo
    • 2
  • M. Mounir Bou-Ali
    • 1
  • Henri Bataller
    • 2
  1. 1.MGEP Mondragon Goi Eskola Politeknikoa, Mechanical and Industrial Manufacturing DepartmentMondragonSpain
  2. 2.Laboratoire des Fluides Complexes et leurs Réservoirs, UMR-5150Université de Pau et des Pays de l’AdourAngletFrance

Personalised recommendations