Microgravity Science and Technology

, Volume 28, Issue 3, pp 309–317 | Cite as

Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures

  • Khaled Y. Kamal
  • Raúl HerranzEmail author
  • Jack J. W. A. van Loon
  • Peter C. M. Christianen
  • F. Javier MedinaEmail author


Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.


Simulated microgravity Suspension cell culture Magnetic levitation Ground-based facilities Arabidopsis thaliana Cell growth Cell proliferation Nucleolus 



We wish to thank Dr. Julio Sáez-Vásquez (CNRS-University of Perpignan-Via Domitia, Perpignan, France) for his generous supply of anti-nucleolin antibody. This work was supported by grants of the Spanish National Plan for Research and Development, Ref. Nos. AYA2010-11834-E, and AYA2012-33982, access to Magnet facilities by the European Union (EUROMAGNET II) Project 2010.17 (NSO06-209) to FJM, the GBF project #4200022650 and #4000105761 to RH and ESA grant contract 4000107455112/NL/PA to JvL. KYK was supported by the Spanish CSIC JAE-PreDoc Program (Ref. JAEPre_2010_01894).

Supplementary material

(MP4 105 MB)


  1. Barjaktarović, ž., Nordheim, A., Lamkemeyer, T., Fladerer, C., Madlung, J., Hampp, R.: Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J. Exp. Bot. 58, 4357–63 (2007)CrossRefGoogle Scholar
  2. Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 470 (1991)CrossRefGoogle Scholar
  3. Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–13 (1997)MathSciNetCrossRefGoogle Scholar
  4. Boonsirichai, K., Guan, C., Chen, R., Masson, P.H.: Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant Biol. 53, 421–47 (2002)CrossRefGoogle Scholar
  5. Brooks, J.S., Reavis, J.A., Medwood, R.A., RA, Stalcup T.F., Meisel, M.W., et al.: New opportunities in science, materials, and biological systems in the low-gravity (magnetic levitation) environment (invited). J. Appl. Phys. 87, 6 (2000)CrossRefGoogle Scholar
  6. Buffett, B.A.: Tidal dissipation and the strength of the Earth’s internal magnetic field. Nature 468, 952–4 (2010)CrossRefGoogle Scholar
  7. Christianen, P.C.: Tuneable gravity using strong gradient magnetic fields. News of Elgra 7, 4 (2010)Google Scholar
  8. Denegre, J., Valles, J.J., Lin, K., Jordan, W., Mowry, K.: Cleavage plans in frogs eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci. 95, 14729–32 (1998)CrossRefGoogle Scholar
  9. Dijkstra, C.E., Larkin, O.J., Anthony, P., Davey, M.R., Eaves, L., et al.: Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. J. R. Soc. Interface 8, 334–44 (2011)CrossRefGoogle Scholar
  10. Geim, A.K., Simon, M.D., Boamfia, M.I., Helfinger, L.O.: Magnet levitation at your fingertips. Nature 400, 2 (1999)CrossRefGoogle Scholar
  11. Glover, P.M., Cavin, I., Qian, W., Bowtell, R., Gowland, P.A.: Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28, 349–61 (2007)CrossRefGoogle Scholar
  12. González-Camacho, F., Medina, F.J.: The nucleolar structure and the activity of nucleolin-like protein NopA100 during the cell cycle in proliferating plant cells. Histochem. Cell Biol. 125, 139–53 (2006)CrossRefGoogle Scholar
  13. Guevorkian, K., Valles, J.M. Jr.: Varying the effective buoyancy od cells using magnetic force. Appl. Phys. Lett. 84, 3 (2004)CrossRefGoogle Scholar
  14. Herranz, R., Medina, F.J.: Cell proliferation and plant development under novel altered gravity environments. Plant Biol. (Stuttg.) 16, 23–30 (2014)CrossRefGoogle Scholar
  15. Herranz, R., Larkin, O.J., Dijkstra, C.E., Hill, R.J., Anthony, P., et al.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 13, 52 (2012a)CrossRefGoogle Scholar
  16. Herranz, R., Larkin, O.J., Dijkstra, C.E., Hill, R.J.A., Anthony, P., et al.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 13, 52 (2012b)CrossRefGoogle Scholar
  17. Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M., et al.: Ground-based facilities for simulation of microgravity, including terminology and organism-specific recommendations for their use. Astrobiology 13, 1–17 (2013)CrossRefGoogle Scholar
  18. Herranz, R., Valbuena, M.A., Youssef, K., Medina, F.J.: Mechanisms of disruption of meristematic competence by microgravity in Arabidopsis seedlings. Plant Signal. Behav. 9, e28289 (2014)CrossRefGoogle Scholar
  19. Hill, R.J., Larkin, O.J., Dijkstra, C.E., Manzano, A.I., de Juan, E., et al.: Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. J. R. Soc. Interface 9, 1438–49 (2012)CrossRefGoogle Scholar
  20. Hoson, T., Kamisaka, S., Buchen, B., Sievers, A., Yamashita, M., Masuda, Y.: Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions. Adv. Space Res. 17, 47–53 (1996)CrossRefGoogle Scholar
  21. Ishii, Y., Hoson, T., Kamisaka, S., Miyamoto, K., Ueda, J., et al.: Plant growth processes in Arabidopsis under microgravity conditions simulated by a clinostat. Biol. Sci. Space 10, 3–7 (1996)CrossRefGoogle Scholar
  22. Kamal, K.Y., Hemmersbach, R., Medina, F.J., Herranz, R.: Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. Life Sci. Space Res. 5, 6 (2015)CrossRefGoogle Scholar
  23. Kiss, J.Z.: Mechanisms of the early phases of plant gravitropism. Crit. Rev. Plant Sci. 19, 551–73 (2000)CrossRefGoogle Scholar
  24. Manzano, A.I., van Loon, J J.W.A., Christianen, P.C., Gonzalez-Rubio, J.M., Medina, F.J., Herranz, R.: Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 13, 105 (2012)CrossRefGoogle Scholar
  25. Manzano, A.I., Larkin, O.J., Dijkstra, C.E., Anthony, P., Davey, M.R., et al.: Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC Plant Biol. 13, 124 (2013)CrossRefGoogle Scholar
  26. Maret, G., Dransfeld, K.: Biomolecules and polymers in high steady magnetic fields topicsin. Top. Appl. Phys. 57, 62 (1985)Google Scholar
  27. Martzivanou, M., Babbick, M., Cogoli-Greuter, M., Hampp, R.: Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229, 155–62 (2006)CrossRefGoogle Scholar
  28. Matía, I., Gonzalez-Camacho, F., Herranz, R., Kiss, J.Z., Gasset, G., et al.: Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J. Plant Physiol. 167, 184–93 (2010)CrossRefGoogle Scholar
  29. May, M.J., Leaver, C.J.: Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103, 621–27 (1993)Google Scholar
  30. Medina, F.J., Cerdido, A., de Carcer, G.: The functional organization of the nucleolus in proliferating plant cells. Eur. J. Histochem. 44, 117–31 (2000)Google Scholar
  31. Menges, M., Murray, J.A.: Synchronization, transformation, and cryopreservation of suspension-cultured cells. Methods Mol. Biol. 323, 45–61 (2006)Google Scholar
  32. Morita, M.T.: Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 61, 705–20 (2010)CrossRefGoogle Scholar
  33. Perenboom, J A.A.J., Wiegers, S.A.J., Christianen, P.C., Zeitler, U., Maan, J.C.: The new installation at the Nijmegen High Field Magnet Laboratory. Physica B 346, 4 (2004)Google Scholar
  34. Raff, M.C.: Size control: the regulation of cell numbers in animal development. Cell 86, 173–5 (1996)CrossRefGoogle Scholar
  35. Simon, M.D., Geim, A.K.: Diamagnetic levitation: flying frogs and floating magnets. J. Appl. Phys. 87, 5 (2000)CrossRefGoogle Scholar
  36. Steel, RGDaJHT: Principles and Procedures of statistics. A. biometerical Approach 2nd Ed. Mac. Gaw Hill Book Company, New York (1980)zbMATHGoogle Scholar
  37. Ueno, S., Iwasaka, M.: Properties of diamagnetic fluid in high gradient magnetic fields. J. Appl. Phys. 75, 3 (1997)Google Scholar
  38. Valles, J.M. Jr, Maris, H.J., Seidel, G.M., Tang, J., Yao, W.: Magnetic levitation-based Martian and lunar gravity simulators. Adv. Space Res. 36, 5 (2005)CrossRefGoogle Scholar
  39. Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., et al.: In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–5 (2000)CrossRefGoogle Scholar
  40. Wiegers, S.A.J., Christianen, P.C., Engelkamp, H., Ouden, A., Perenboom, J A.A.J., et al.: The High Field Magnet Laboratory at Radboud University Nijmegen. J. Low Temp. Phys. 159, 5 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Khaled Y. Kamal
    • 1
    • 5
  • Raúl Herranz
    • 1
    Email author
  • Jack J. W. A. van Loon
    • 2
    • 3
  • Peter C. M. Christianen
    • 4
  • F. Javier Medina
    • 1
    Email author
  1. 1.Centro de Investigaciones Biológicas (CSIC)MadridSpain
  2. 2.European Space Research & Technology Center, TEC-MMG LaboratoryEuropean Space Agency (ESTEC-ESA)NoordwijkNetherlands
  3. 3.Dutch Experiment Support Center (DESC) @ Department Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center / Department Oral Function and Restorative Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)AmsterdamNetherlands
  4. 4.High Field Magnet Laboratory (HFML), Institute for Molecules and MaterialsRadboud University NijmegenNijmegenNetherlands
  5. 5.Faculty of AgricultureZagazig UniversityZagazigEgypt

Personalised recommendations