Microgravity Science and Technology

, Volume 28, Issue 3, pp 191–203 | Cite as

Facilities for Simulation of Microgravity in the ESA Ground-Based Facility Programme

  • Sonja Brungs
  • Marcel Egli
  • Simon L. Wuest
  • Peter C. M. Christianen
  • Jack J. W. A. van Loon
  • Thu Jennifer Ngo Anh
  • Ruth Hemmersbach
ORIGINAL PAPER

Abstract

Knowledge of the role of gravity in fundamental biological processes and, consequently, the impact of exposure to microgravity conditions provide insight into the basics of the development of life as well as enabling long-term space exploration missions. However, experimentation in real microgravity is expensive and scarcely available; thus, a variety of platforms have been developed to provide, on Earth, an experimental condition comparable to real microgravity. With the aim of simulating microgravity conditions, different ground-based facilities (GBF) have been constructed such as clinostats and random positioning machines as well as magnets for magnetic levitation. Here, we give an overview of ground-based facilities for the simulation of microgravity which were used in the frame of an ESA ground-based research programme dedicated to providing scientists access to these experimental capabilities in order to prepare their space experiments.

Keywords

Levitation Clinostat Random Positioning Machine Simulated microgravity 

References

  1. Adrian, A., Schoppmann, K., Sromicki, J., Brungs, S., von der Wiesche, M., Hock, B., Kolanus, W., Hemmersbach, R., Ullrich, O.: The oxidative burst reaction in mammalian cells depends on gravity. Cell. Commun. Signal 11, 98 (2013)CrossRefGoogle Scholar
  2. Aleshcheva, G., Bauer, J., Hemmersbach, R., Egli, M., Grimm, D.: Tissue Engineering of cartilage on ground-based facilities. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9479-0
  3. Anken, R., Bauer, U., Hilbig, R.: Clinorotation increases the growth of utricular otoliths of developing cichlid fish. Microgravity Sci. Technol. 22(2), 151–154 (2015)CrossRefGoogle Scholar
  4. Anken, R., Brungs, S., Grimm, D., Knie, M., Hilbig, R., Fish inner otolith growth under real microgravity (spaceflight) and clinorotation. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9459-4
  5. Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys. III France 1, 1423–1428 (1991a)Google Scholar
  6. Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 6309 (1991b)Google Scholar
  7. Beaugnon, E., Fabregue, D., Billy, D., Nappa, J., Tournier, R.: Dynamics of magnetically levitated droplets. Physica B 294, 715–720 (2001)CrossRefGoogle Scholar
  8. Benavides Damm, T., Walther, I., Wüest, S.L., Sekler, J., Egli, M.: Cell cultivation under different gravitational loads using a novel random positioning incubator. Biotechnol. Bioeng. 111(6), 1180–1190 (2014)CrossRefGoogle Scholar
  9. Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)MathSciNetCrossRefGoogle Scholar
  10. Beysens, D.A., van Loon, J.J.W.A (eds.): Generation and applications of extra-terrestrial environments on earth. River Publishers, Aalborg (2015). ISBN: 978-87-93237-53-7Google Scholar
  11. Borst, A., van Loon, J.J.W.A.: Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21(4), 287–292 (2009)CrossRefGoogle Scholar
  12. Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5, 23–30 (1992)Google Scholar
  13. Brungs, S., Hauslage, J., Hilbig, R., Hemmersbach, R., Anken, R.: Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv. Space Res. 48, 792–798 (2011)CrossRefGoogle Scholar
  14. Brungs, S., Kolanus, W., Hemmersbach, R.: Syk phosphorylation – a gravisensitive step in macrophage signaling. Cell Commun. Signal 13(1), 9 (2015a)Google Scholar
  15. Brungs, S., Petrat, G., von der Wiesche, M., Anken, R., Kolanus, W., Hemmersbach, R.: Simulating parabolic flight like g-profiles on ground - a combination of centrifuge and clinostat. Microgravity Sci. Technol. (2015b). doi:10.1007/s12217-015-9458-5
  16. Catherall, A.T., Eaves, L., King, P.J., Booth, R.: Floating gold in cryogenic oxygen. Nature 422, 579 (2003)CrossRefGoogle Scholar
  17. Denegre, J.M., Valles Jr., J.M., Lin, K., Jordan, W.B., Mowry, K.L.: Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci. USA 95, 14729–14732 (1998)CrossRefGoogle Scholar
  18. Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci. Technol. 25, 153–159 (2013)CrossRefGoogle Scholar
  19. Fengler, S., Spirer, I., Neef, M., Ecke, M., Hauslage, J., Hampp, R.: changes in gene expression of Arabidopsis thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9452-y
  20. Fischer, J., Schoppmann, K., Knie, M., Laforsch, C.: Responses of microcrustaceans to simulated microgravity (2D-clinorotation) - preliminary assessments for the development of Bioregenerative Life Support Systems (BLSS). Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9470-9
  21. Guevorkian, K., Valles, J.M.: Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. PNAS 103, 13051–13056 (2006)CrossRefGoogle Scholar
  22. Häder, D.P., Hemmersbach, R., Lebert, M.: Gravity and the Behavior of Unicellular Organisms. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  23. Hansen, P.-D., Unruh, E.: TRIPLE LUX – B: Phagocytosis in mussel hemocytes. Proc. 9th Eur. Symp. Life Sciences Research in Space. 26th Annu. Int. Gravitational Physiology Meeting. Cologne, Germany, ESA SP – 585 (2005)Google Scholar
  24. Hasenstein, K.H., van Loon, J.J.W.A.: Clinostats and other rotating systems—Design, function, and limitations. In: Beysens, D.A., van Loon, J.J.W.A (eds.) Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers, Aalborg (2015)Google Scholar
  25. Heijna, M.C.R., Poodt, P.W.G., Tsukamoto, K, de Grip, W.J., Christianen, P.C.M., Maan, J.C., Hendrix, J.L.A., van Enckevort W.J.P., Vlieg, E.: Magnetically controlled gravity for protein crystal growth. Appl. Phys. Lett. 90, 264105 (2007)CrossRefGoogle Scholar
  26. Hemmersbach, R., Voormanns, R., Häder, D.P.: Graviresponses in Paramecium biaurelia under different accelerations: studies on the ground and in space. J. Exp. Biol. 199, 2199–2205 (1996)Google Scholar
  27. Hemmersbach, R., Simon, A., Waßer, K., Hauslage, J., Christianen, P.C.M., Albers, P.W., Lebert, M., Richter, P., Alt, W., Anken, R.: Impact of a high magnetic field on the orientation of gravitactic unicellular organisms – A critical consideration about the application of magnetic fields to mimic functional weightlessness. Astrobiology 14, 205–215 (2014)CrossRefGoogle Scholar
  28. Hensel, W., Sievers, A.: Effects of prolonged omnilateral gravistimulation on the ultrastructure of statocytes and on the graviresponse of roots. Planta 150, 338–346 (1980)CrossRefGoogle Scholar
  29. Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., Geest, M., Hauslage, J., Hilbig, R., Hill, R., Lebert, M., Medina, F., Vagt, N., Ullrich, O., van Loon, J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1), 1–17 (2013a)Google Scholar
  30. Herranz, R., Manzano, A.I., van Loon, J.J.W.A., Christianen, P.C.M., Medina, J.F.: Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 13, 217–224 (2013b)Google Scholar
  31. Hill, R.J.A., Eaves, L.: Nonaxisymmetric shapes of a magnetically levitated spinning water droplet. Phys. Rev. Lett. 101, 234501 (2008)CrossRefGoogle Scholar
  32. Hill, R.J.A., Larkin, O.J., Dijkstra, C.E., Manzano, A.I, de Juan, E., Davey, M.R., Anthony, P., Eaves, L., Medina, J.F., Marco, R., Herranz, R.: Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruit fly. J. R. Soc. Interface 9, 1438–1449 (2012)CrossRefGoogle Scholar
  33. Horn, A., Ullrich, O., Huber, K., Hemmersbach, R.: PMT (photomultiplier) clinostat. Microgravity Sci. Technol. 23, 67– 71 (2011)CrossRefGoogle Scholar
  34. Hoson, T., Seiichiro, K., Masuda, Y., Yamashita, M.: Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. Tokyo 105(1), 53–70 (1992)CrossRefGoogle Scholar
  35. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., Buchen, B.: Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203(1), 187–197 (1997)CrossRefGoogle Scholar
  36. Ikezoe, Y., Hirota, N., Nakagawa, J., Kitazawa, K.: Making water levitate. Nature 393, 749–750 (1998)CrossRefGoogle Scholar
  37. Kamal, K.Y., Herranz, R., van Loon, J.J.W.A., Christianen, P.C.M., Medina, F.J.: Evaluation of simulated microgravity environments induced by diamagnetic levitation of plant cell suspension cultures. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9472-7
  38. Leguy, C.A., Delfos, R., Mathieu, J.B.M., Pourquie, Ch.P., Krooneman, J., Westerweel, van Loon, J.J.W.A.: Fluid motion for microgravity simulations in a random positioning machine. Gravit. Space Biol. Bull. 25 (1), 36–39 (2011)Google Scholar
  39. Lorin, C., Hill, R.J.A., Mailfert, A.: Magnetic levitation. In: Beysens, D.A., van Loon, J.J.W.A (eds.) Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers, Aalborg (2015)Google Scholar
  40. Manzano, A.I., van Loon, J.J.W.A., Christianen, P.C.M., Gonzalez-Rubio, J.M., Medina, J.F., Herranz, R.: Gravitational and magnetic field variations synergize to reveal subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genom 13, 105 (2012)CrossRefGoogle Scholar
  41. Manzano, A., den Toom, A., Dowson, A., Valbuena, M.A., Medina, F.J., Herranz, R., van Loon, J.J.W.A.: Progressive effects from simulated microgravity to hypergravity on cell growth and proliferation and on gene expression in the Brassicaceae family. In: 30th Annu. American Society for Gravitational and Space Research (ASGSR) Conf., Pasadena, CA, USA (2014)Google Scholar
  42. Maret, G., Dransfeld, K.: Biomolecules and polymers in high steady magnetic fields. In: Herlach, F (ed.) Topics in Applied Physics, vol. 57: Strong and Ultrastrong Magnetic Fields and their Applications, pp 143–204. Springer, NY (1985)Google Scholar
  43. Mesland, D.: Novel ground-based facilities for research in the effects of weight. ESA Microgravity News 9, 5–10 (1996a)Google Scholar
  44. Mesland, D., Anton, A., Willemsen, H., van den Ende, H.: The Free Fall Machine—a ground-based facility for microgravity research in life sciences. Microgravity Sci. Technol. 9(1), 10–14 (1996b)Google Scholar
  45. Micali, N., Engelkamp, H., van Rhee, P.G., Christianen, P.C.M., Monsù Scolaro, L., Maan, J.C.: Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012)CrossRefGoogle Scholar
  46. Moes, M.J.A., Gielen, J.C., Bleichrodt, R., van Loon, J.J.W.A., Christianen, P.C.M., Boonstra, J.: Simulation of microgravity by magnetic levitation and random positioning: effect on human A431 cell morphology. Microgravity Sci. Technol. 23, 249–261 (2011)CrossRefGoogle Scholar
  47. Neef, M., Denn, T., Ecke, M., Hampp, R.: Intracellular calcium decrease upon hyper gravity-treatment of Arabidopsis thaliana cell cultures. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9457-6
  48. Newcombe, F.C.: Limitations of the clinostat as an instrument for scientific research. Science 20, 376–379 (1904)CrossRefGoogle Scholar
  49. Pache, C., Kühn, J., Westphal, K., Fatih Toy, M., Parent, J., Büchi, O., Franco-Obregón, A., Depeursinge, C., Egli, M.: Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity. J. Biomed. Opt. 15(2), 026021 (2010)CrossRefGoogle Scholar
  50. Pacheco-Martinez, H.A., Liao, L., Hill, R.J.A., Swift, M.R., Bowley, R.M.: Spontaneous orbiting of two spheres levitated in a vibrated liquid. Phys. Rev. Lett. 110, 154501 (2013)CrossRefGoogle Scholar
  51. Paulsen, K., Thiel, C., Timm, J., Schmidt, P., Huber, K., Tauber, S., Hemmersbach, R., et al.: Microgravity-induced alterations in signal transduction in cells of the immune system. Acta Astronaut 67, 1116–1125 (2010)CrossRefGoogle Scholar
  52. Perenboom, J.A.A.J., Maan, J.C., van Breukelen, M.R., Wiegers, S.A.J., den Ouden, A., Wulffers, C.A., van der Zande, W.J., Jongma, R.T., van der Meer, A.F.G., Redlich, B.: Developments at the high field magnet laboratory in Nijmegen. J. Low. Temp. Phys. 170, 520–530 (2013)CrossRefGoogle Scholar
  53. Poodt, P.W.G., Heijna, M.C.R., Tsukamoto, K, de Grip, W.J., Christianen, P.C.M., Maan, J.C., van Enckevort, W.J.P., Vlieg, E.: Suppression of convection using gradient magnetic fields during crystal growth of NiSO4 ⋅6H2O. Appl. Phys. Lett. 87, 214105 (2005)CrossRefGoogle Scholar
  54. Rikken, R.S.M., Nolte, R.J.M., Maan, J.C., van Hest, J.C.M., Wilson, D.A., Christianen, P.C.M.: Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10, 1295–1308 (2014)CrossRefGoogle Scholar
  55. Scano, A.: Effeti di una variazione continua del campo gravitazionale sullo svoluppo ed accrescimento di Lathyrus Odororatus. Communication presented at 6th Int. and 12th Eur. Congr. Aeronautical and Space Medicine, Rome (1963)Google Scholar
  56. Schüler, O., Krause, L., Görög, M., Hauslage, J., Kesseler, L., Böhmer, M., Hemmersbach, R.: ARADISH – Development of a standardized plant growth chamber for experiments in gravitational biology using ground-based facilities. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9454-9 Google Scholar
  57. Shinde, V., Brungs, S., Hescheler, J., Hemmersbach, R., Sachinidis, A.: Pipette-based method to study embryoid body formation derived from mouse and human pluripotent stem cells partially recapitulating early embryonic development under simulated microgravity conditions. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9469-2 Google Scholar
  58. Toy, M.F., Parent, J., Kühn, J., Egli, M., Depeursinge, C.: Dual-mode digital holographic and fluorescence microscopy for the study of morphological changes in cells under simulated microgravity. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, 7570–7573 (2010)Google Scholar
  59. Toy, M.F., Kühn, J., Richard, S., Parent, J., Egli, M., Depeursinge, C.: Accelerated autofocusing of off-axis holograms using critical sampling. Opt. Lett. 37(24), 5094–5096 (2012a)Google Scholar
  60. Toy, M.F., Richard, S., Kühn, J., Franco-Obregón, A., Egli, M., Depeursinge, C.: Enhanced robustness digital holographic microscopy for demanding environment of space biology. Biomed. Opt. Express 3(2), 313–326 (2012b)Google Scholar
  61. Unruh, E., Brungs, S., Langer, S., Bornemann, G., Frett, T., Hansen, P.-D.: Comprehensive study of the influence of altered gravity on the oxidative burst of mussel (Mytilus edulis) hemocytes. Microgravity, Sci. Technol. (2015). doi:10.1007/s12217-015-9438-9 Google Scholar
  62. Valles, J.M., Lin, K., Denegre, J.M., Mowry, K.L.: Stable magnetic field gradient levitation of Xenopus laevis: Toward low-gravity simulation. Biophys. J. 73, 1130– 1133 (1997)CrossRefGoogle Scholar
  63. Valles Jr., J.M., Maris, H.J., Seidel, G.M., Tang, J., Yao, W.: Magnetic levitation-based Martian and Lunar gravity simulator. Adv. Space Res. 36, 114–118 (2005)CrossRefGoogle Scholar
  64. Van Loon, J.J.W.A., Veldhuijzen, J.P., Kiss, J., Wood, C., van de Ende, H., Guntemann, A., Jones, D., de Jong, H., Wubbels, R.: Microgravity research starts on the ground! Apparatus for long term ground based hypo- and hypergravity studies. In: Wilson, A. (ed.) ESA SP-433, pp 415–419. ESTEC Noordwijk, the Netherlands (1999)Google Scholar
  65. Van Loon, J.J.W.A., Folgering, E.H.T.E., Bouten, C.V.C., Veldhuijzen, J.P., Smit, T.H.: Inertial shear forces and the use of centrifuges in gravity research. What is the proper control? ASME J. Biomech. Eng. 125 (3), 342–346 (2003)CrossRefGoogle Scholar
  66. Van Loon, J.J.W.A.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39(7), 1161–1165 (2007)CrossRefGoogle Scholar
  67. von Sachs, F.G.J.R.: Über Ausschliessung der geotropischen und heliotropischen Krümmungen wärend des Wachsthums. Würzburger Arbeiten 2, 209–225 (1879)Google Scholar
  68. Wang, H., Li, X., Krause, L., Görög, M., Schüler, O. , Hauslage, J., Hemmersbach, R., Kircher, A., Lasok, H., Haser, T., Rapp, K., Schmidt, J., Yu, X., Pasternak, T., Ausbry-Hivet, D., Tietz, O., Dovzhenko, A., Palme, L., Ditengou, F. A.: 2-D clinostat for simulated microgravity experiements with Arabidopsis seedlings. Micrograv. Sci. Technol. (2015). doi:10.1007/s12217-015-9478-1
  69. Warnke, E., Kopp, S., Wehland, M., Hemmersbach, R., Bauer, J., Pietsch, J., Infanger, M., Grimm, D.: Thyroid cells exposed to simulated microgravity conditions – comparison of the fast rotating clinostat and the Random Positioning Machine. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9456-7 Google Scholar
  70. Wehland, M., Warnke, E., Frett, T., Hemmersbach, R., Hauslage, J., Ma, X., Aleshcheva, G., Pietsch, J., Bauer, J., Grimm, D.: The impact of hypergravity and vibration on gene and protein expression of thyroid cells. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9474-5 Google Scholar
  71. Weilert, M.A., Whitaker, D.L., Maris, H.J., Seidel, G.M.: Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett. 77, 4840–4843 (1996)CrossRefGoogle Scholar
  72. Wuest, S., Richard, S., Walther, I., Furrer, R., Anderegg, R., Sekler, J., Egli, M.: A novel microgravity simulator applicable for three-dimensional cell culturing. Microgravity Sci. Technol. 26(2), 1–12 (2014)CrossRefGoogle Scholar
  73. Wuest, S.L., Richard, S., Kopp, S., Grimm, D., Egli, M.: Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. BioMed. Res. Int. (2015). doi:10.1155/2015/971474 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sonja Brungs
    • 1
  • Marcel Egli
    • 2
  • Simon L. Wuest
    • 2
  • Peter C. M. Christianen
    • 3
  • Jack J. W. A. van Loon
    • 4
  • Thu Jennifer Ngo Anh
    • 5
  • Ruth Hemmersbach
    • 1
  1. 1.German Aerospace Center (DLR), Gravitational BiologyLinder HoeheCologneGermany
  2. 2.School of Engineering and Architecture, CC Aerospace Biomedical Science and Technology, Space Biology GroupLucerne University of Applied Sciences and ArtsHergiswilSwitzerland
  3. 3.High Field Magnet Laboratory (HFML)Institute for Molecules and Materials (IMM), Radboud University NijmegenNijmegenThe Netherlands
  4. 4.DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery / Oral Pathology, VU University Medical Center, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam & ESA-ESTEC, TEC-MMG, Life & Physical ScienceInstrumentation and Life Support Laboratory NoordwijkNoordwijkThe Netherlands
  5. 5.Human Spaceflight and OperationsEuropean Space AgencyNoordwijkThe Netherlands

Personalised recommendations