Advertisement

Microgravity Science and Technology

, Volume 27, Issue 4, pp 253–260 | Cite as

Boiling Crisis Dynamics: Low Gravity Experiments at High Pressure

  • V. Nikolayev
  • Y. Garrabos
  • C. Lecoutre
  • T. Charignon
  • D. Hitz
  • D. Chatain
  • R. Guillaument
  • S. Marre
  • D. Beysens
ORIGINAL PAPER

Abstract

To understand the boiling crisis mechanism, one can take advantage of the slowing down of boiling at high pressures, in the close vicinity of the liquid-vapor critical point of the given fluid. To preserve conventional bubble geometry, such experiments need to be carried out in low gravity. We report here two kinds of saturated boiling experiments. First we discuss the spatial experiments with SF 6 at 46 C. Next we address two ground-based experiments under magnetic gravity compensation with H 2 at 33 K. We compare both kinds of experiments and show their complementarity. The dry spots under vapor bubbles are visualized by using transparent heaters made with metal oxide films. We evidence two regimes of the dry spots growth: the regime of circular dry spots and the regime of chain coalescence of dry spots that immediately precedes the heater dryout. A recent H 2 experiment is shown to bridge the gap between the near-critical and low pressure boiling experiments.

Keywords

CHF Boiling cisis Departure from nucleate boiling Bubble growth 

Notes

Acknowledgments

The financial support of CNES within the fundamental microgravity research program and two EMFL grants that covered usage of the LNCMI magnet facility are acknowledged. The authors are grateful to J. Chartier and P. Bonnay of SBT for the help with the development and technical support of the magnetic gravity compensation experiments and to E. de Malmazet for the initial design of the LHYLA cell. We acknowledge the support of the LNCMI, member of the European Magnetic Field Laboratory (EMFL). We thank the whole CNES-DECLIC team and in particular G. Pont for their enthusiastic and helpful involvement in this work.

References

  1. Charignon, T., Lloveras, P., Chatain, D., Truskinovsky, L., Vives, E., Beysens, D., Nikolayev, V.S.: Criticality in the slowed-down boiling crisis at zero gravity. Phys. Rev. E 91, 053007 (2015). doi: 10.1103/PhysRevE.91.053007 CrossRefGoogle Scholar
  2. Chung, H.J., No, H.C.: A nucleate boiling limitation model for the prediction of pool boiling CHF. Int. J. Heat Mass Transfer 50(15-16), 2944–2951 (2007). doi: 10.1016/j.ijheatmasstransfer.2006.12.023 zbMATHCrossRefGoogle Scholar
  3. Dhir, V.K.: Boiling heat transfer. Ann. Rev. Fluid Mech. 30, 365–401 (1998). doi: 10.1146/annurev.fluid.30.1.365 CrossRefGoogle Scholar
  4. Garrabos, Y., Lecoutre, C., Beysens, D., Nikolayev, V., Barde, S., Pont, G., Zappoli, B.: Transparent heater for study of the boiling crisis near the vapor-liquid critical point. Acta Astronaut. 66(5-6), 760–768 (2010). doi: 10.1016/j.actaastro.2009.08.018 CrossRefGoogle Scholar
  5. Garrabos, Y., Lecoutre-Chabot, C., Hegseth, J., Nikolayev, V.S., Beysens, D., Delville, J.P.: Gas spreading on a heated wall wetted by liquid. Phys. Rev. E 64 (5), 051602 (2001). doi: 10.1103/PhysRevE.64.051602 CrossRefGoogle Scholar
  6. Gong, S., Ma, W., Gu, H.: An experimental investigation on bubble dynamics and boiling crisis in liquid films. Int. J. Heat Mass Transfer 79, 694–703 (2014). doi: 10.1016/j.ijheatmasstransfer.2014.08.065 CrossRefGoogle Scholar
  7. Janeček, V., Nikolayev, V.S.: Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces. Phys. Rev. E 87, 012404 (2013). doi: 10.1103/PhysRevE.87.012404 CrossRefGoogle Scholar
  8. Janeček, V., Nikolayev, V.S.: Triggering the boiling crisis: a study of the dry spot spreading mechanism. Interfacial Phenomena and Heat Transfer 2 (4), 363–383 (2014). doi: 10.1615/InterfacPhenomHeatTransfer.2015012273 CrossRefGoogle Scholar
  9. Jung, J., Kim, S.J., Kim, J.: Observations of the critical heat flux process during pool boiling of FC-72. J. Heat Transfer 136(4), 041501 (2014). doi: 10.1115/1.4025697 MathSciNetCrossRefGoogle Scholar
  10. Kandlikar, S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123(6), 1071–1079 (2001). doi: 10.1115/1.1409265 CrossRefGoogle Scholar
  11. Kandlikar, S.G., Steinke, M.E.: Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. Int. J. Heat Mass Transfer 45, 3771–3780 (2002). doi: 10.1016/S0017-9310(02)00090-X CrossRefGoogle Scholar
  12. Kannengieser, O., Bergez, W., Colin, C.: Boiling on an isolated nucleation site close to CHF conditions. In: Proceedings of 15th Int. Heat Transfer Conf. Kyoto, Japan (2014). Paper IHTC15-8856Google Scholar
  13. Lecoutre, C., Garrabos, Y., Beysens, D., Nikolayev, V., Hahn, I.: Boiling phenomena in near-critical SF6 observed in weightlessness. Acta Astronaut. 100, 22–29 (2014). doi: 10.1016/j.actaastro.2014.03.012 CrossRefGoogle Scholar
  14. Lloveras, P., Salvat-Pujol, F., Truskinovsky, L., Vives, E.: Boiling crisis as a critical phenomenon. Phys. Rev. Lett 108, 215701 (2012). doi: 10.1103/PhysRevLett.108.215701 CrossRefGoogle Scholar
  15. Nikolayev, V., Chatain, D., Beysens, D., Pichavant, G.: Magnetic gravity compensation. Microgravity Sci. Technol. 23(2), 113–122 (2011). doi: 10.1007/s12217-010-9217-6 Google Scholar
  16. Nikolayev, V.S.: Dynamics of the triple contact line on a nonisothermal heater at partial wetting. Phys. Fluids 22(8), 082105 (2010). doi: 10.1063/1.3483558 CrossRefGoogle Scholar
  17. Nikolayev, V.S., Beysens, D.A.: Boiling crisis and non-equilibrium drying transition. Europhys. Lett 47(3), 345–351 (1999). doi: 10.1209/epl/i1999-00395-x CrossRefGoogle Scholar
  18. Nikolayev, V.S., Beysens, D.A., Lagier, G.L., Hegseth, J.: Growth of a dry spot under a vapor bubble at high heat flux and high pressure. Int. J. Heat Mass Transfer 44(18), 3499–3511 (2001). doi: 10.1016/S0017-9310(01)00024-2 zbMATHCrossRefGoogle Scholar
  19. Nikolayev, V.S., Chatain, D., Garrabos, Y., Beysens, D.: Experimental evidence of the vapor recoil mechanism in the boiling crisis. Phys. Rev. Lett 184503, 97 (2006). doi: 10.1103/PhysRevLett.97.184503 Google Scholar
  20. Nukiyama, S.: The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. J. Soc. Mech. Eng. Jpn. 37, 367–374 (1934). translated in Int. J. Heat Mass Transfer 9, 1419–1433 (1966)Google Scholar
  21. Straub, J.: Boiling heat transfer and bubble dynamics in microgravity. Adv. Heat Transfer 35, 57–172 (2001). doi: 10.1016/S0065-2717(01)80020-4 CrossRefGoogle Scholar
  22. Theofanous, T.G., Dinh, T.N., Tu, J.P., Dinh, A.T.: The boiling crisis phenomenon. Part II: Dryout dynamics and burnout. Exp. Thermal Fluid Sci. 26, 793–810 (2002). doi: 10.1016/S0894-1777(02)00193-0 CrossRefGoogle Scholar
  23. Yagov, V.V.: Is a crisis in pool boiling actually a hydrodynamic phenomenon. Int. J. Heat Mass Transfer 73, 265–273 (2014). doi: 10.1016/j.ijheatmasstransfer.2014.01.076 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • V. Nikolayev
    • 1
  • Y. Garrabos
    • 2
  • C. Lecoutre
    • 2
  • T. Charignon
    • 3
  • D. Hitz
    • 3
  • D. Chatain
    • 3
  • R. Guillaument
    • 2
  • S. Marre
    • 2
  • D. Beysens
    • 3
    • 4
  1. 1.Service de Physique de l’Etat CondenséCNRS UMR 3680, IRAMIS/DSM/CEA SaclayGif-sur-YvetteFrance
  2. 2.CNRS, Univ. BordeauxICMCB, UPR 9048PessacFrance
  3. 3.Service des Basses TempératuresCEA-Université Grenoble Alpes, INACGrenoble Cedex 9France
  4. 4.Physique et Mécanique des Milieux HétérogènesUMR 7636 ESPCI - CNRS - Univ. Paris-Diderot - Univ. P.M. CurieParisFrance

Personalised recommendations