Microgravity Science and Technology

, Volume 26, Issue 1, pp 57–64 | Cite as

Comparative Analyses of ESA, NASA and JAXA Signals of Acceleration During the SODI-IVIDIL Experiment

  • Nuria Sáez
  • Xavier Ruiz
  • Fina Gavaldà
  • Valentina Shevtsova
Original Article


The present work aims to complete the analysis of the vibrational impact generated by the Influence of VIbrations on DIffusion of Liquids, IVIDIL, experiment in a global way. To do so, we have analysed all the episodes which, along the active period between September 2009 and January 2010, accounts for simultaneous accelerometric signals coming from the Columbus (ESA) module, the Destiny (NASA) module and the Pressurized module of the Kibo complex, PM-Kibo, (JAXA) respectively. Signals have been downloaded thanks to the NASA Principal Investigator Microgravity Services, PIMS, website. Vibrational analysis involved the consideration of second and higher order statistical techniques. In addition, a comparative study of the RMS acceleration integrated over one-third octave frequency bands enabled to check if the ISS vibratory limit requirements are everywhere accomplished. In summary it can be concluded that, in the vibratory regime, the experiment in the Columbus module is isolated enough of the Destiny and PM-Kibo ones. In addition, concerning only the Columbus data, the study also concluded that the peculiar energy exchange detected between the nominal frequency of the movement and its third harmonic is due to nonlinearities probably originated by the shaker, the module of translational arrangement mounted on the SODI instrument.

All these results introduce an interesting generic question: is it always correct to consider that the accelerometric data only coming from one module can offer to the Space Station customers a suitable global scenario of the ISS environment?, if not, what is the real extent of these data?


Acceleration analysis Microgravity Bispectrum Trispectrum 



The present work is part of our participation in the HSF-US/2010-042 and HSF-US/2010-041 ESA projects.


  1. Collis, W.B., White, P.R., Hammond, J.K.: Higher-order spectra: the bispectrum and trispectrum. Mech. Syst. Signal Pr. 12(3), 375–394 (1998)CrossRefGoogle Scholar
  2. Courtney, C.R.P., Neild, S.A., Wilcox, P.D., Drinkwater, B.W.: Application of the bispectrum for detection of small nonlinearities excited sinusoidally. J. Sound Vib. 329, 4279–4203 (2010)CrossRefGoogle Scholar
  3. DeLombard, R., Hrovat, K., Kelly, E.M., Humphreys, B.: Interpreting the International Space Station microgravity environment. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exibit, Reno, Nevada (2005). AIAA-2005-0727Google Scholar
  4. Fackrell, J.W.A., White, P.R., Hammond, J.K., Pinnington, R.J., Parsons, A.T.: The interpretation of the bispectra of vibration signals. I.- Theory, Mech. Syst. Signal Pr. 9, 257–266 (1995a)CrossRefGoogle Scholar
  5. Fackrell, J.W.A., White, P.R., Hammond, J.K., Pinnington, R.J., Parsons, A.T.: The interpretation of the bispectra of vibration signals. II.- Experimental results and applications. Mech. Syst. Signal Pr. 9, 267–274 (1995b)CrossRefGoogle Scholar
  6. Heese, J., Moss, L.: ISS payload microgravity control and disturbance predictions. Microgravity Environment interpretation Tutorial (MEIT), Section 19, pp 1–67 (2004)Google Scholar
  7. Heinnzel, G., Rüdigher, A., Schilling, R.: Spectrum and spectral density estimation by the Discrete Fourier Transform (DFT) including a comprehensive list window functions and some new flat-top windows. Max-Planck-Institut für Gravitations Physik, 15–16 (2002)Google Scholar
  8. Hickey, D., Worden, K., Platten, M.F., Wright, J.R., Cooper, J.E.: Higher-order spectra for identification of nonlinear modal coupling. Mech. Syst. Signal Pr. 23, 1037–1061 (2009)CrossRefGoogle Scholar
  9. Hrovat, K.: Analysis techniques for vibratory data, NASA 7th Annual Microgravity Environment Interpretation Tutorial, NASA Glenn Research Center. Ohio Aerospace Institute, Cleveland, Ohio (2004)Google Scholar
  10. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Pr 20, 505–592 (2006)CrossRefGoogle Scholar
  11. McPherson, K., Keller, J., Kelly, E., Hrovat, K.: The NASA Glenn Research Centers acceleration measurement and analysis projects support for the International Space Station (ISS), ASTRO 2012, 16th CASI astronautics conference. Quebec City, Canada (2012)Google Scholar
  12. Jules, K.: Working in a reduced-gravity environment: “A Primer/”, Microgravity Environment Interpretation Tutorial (MEIT), Section 2, pp. 1–77 (2002)Google Scholar
  13. Jules, K., McPerson, K., Hrovat, K., Kelly, E.: Initial characterization of the microgravity environment of the international space station: increments 2 through 4. Acta Astronaut 55, 855–887 (2004)CrossRefGoogle Scholar
  14. Jules, K., Hrovat, K., Kelly, E., Reckart, T.: International Space Station Increment-6/8 Microgravity Environment. Summary report (2005). NASA/TM-2005-213896Google Scholar
  15. McGill, R., Tukey, J.W., Larsen, W.A.: Variation of boxplots. Am. Stat. 32(1), 12–16 (1978)Google Scholar
  16. Nelson, L.S.: Evaluating overlapping confidence intervals. J. Qual. Technol. 21, 140–141 (1989)Google Scholar
  17. Principal Investigator Microgravity Services. PIMS ISS Acceleration Handbook. NASA Microgravity Science Division / Microgravity Environment Program Glenn Research Center (2004)Google Scholar
  18. Rivola, A.: Applications of higher order spectra to the machine condition monitoring, p 107. Publ. DIEM, University of Bologna (2000)Google Scholar
  19. Rogers, M.J.B., Hrovat, K., Kelly, E., Reckart, T.: Accelerometer data analysis and presentation techniques, NASA Lewis Research Center, Clevehand. Ohio (1997)Google Scholar
  20. Sáez, N., Gavaldà, Jna., Ruiz, X.: On the vibrational environment of the “Influence of VIbrations on DIffusion of Liquids” experiment. 11th International Conference on Vibrational Problems (ICOVP), Lisbon, Portugal, 9-12 September (2013a)Google Scholar
  21. Sáez, N., Ruiz, X., Gavaldà, Jna., Pallarés, J., Shevtsova, V.: Comparative ISS accelerometric analyses. Acta Astronaut 94(2), 681–689 (2013b)CrossRefGoogle Scholar
  22. Sáez, N., Ruiz, X., Gavaldà, Jna., Pallarés, J., Shevtsova, V., On the accuracy of the interdiffusion coefficient measurements of high temperature binary mixtures under real ISS condition. C. R. Mec. 341, 405–416 (2013c)CrossRefGoogle Scholar
  23. Shevtsova, V.: IVIDIL experiment onboard the ISS. Adv. Space Res. 46, 672–679 (2010)CrossRefGoogle Scholar
  24. Shevtsova, V., Mialdun, A., Melinkov, D., Ryzhkov, I., Gaponenko, Y., Saghir, Z., Lyubimova, Y., Legros, J.C.: The IVIDIL experiment onboard the ISS: Thermodiffusion in the presence of controlled vibrations. C. R. Mec. 339, 310–317 (2011)CrossRefGoogle Scholar
  25. Sinha, J.K., Elbhbah, K.: A future possibility of vibration based condition monitoring of rotating machines. Mech. Syst. Signal Pr. 34, 231–240 (2013)CrossRefGoogle Scholar
  26. Thomson, T.R., Casademunt, J., Drolet, F., Viñals, J.: Coarsening of solid-liquid mixtures in a random acceleration field. Phys. Fluids. 9(5), 1336–1343 (1997)CrossRefGoogle Scholar
  27. Tryggvason, B.V., Redden, R.F., Herring, R.A.: The vibration environment on the International Space Station: Its significate to fluid-based experiments. Acta Astronaut 48(2-3), 59–70 (2001)CrossRefGoogle Scholar
  28. Worton, M.: Fundamentals of microgravity vibration isolation. Microgravity Environment Interpretation Tutorial (MEIT), Section 14, pp. 1–22 (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nuria Sáez
    • 1
  • Xavier Ruiz
    • 1
  • Fina Gavaldà
    • 1
  • Valentina Shevtsova
    • 2
  1. 1.Departament de Física Química i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Microgravity Research CenterUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations