Microgravity Science and Technology

, Volume 25, Issue 2, pp 127–139 | Cite as

Transient Effect of Micro Vibration from Two Space Vehicles on Mixture During Thermodiffusion Experiment

Original Article


Numerical modeling of thermodiffusion experiment for a binary mixture of water and isopropanol under micro-vibrations condition is presented. The vibrations obtained onboard ISS and FOTON-M3 are due to different activities. The effect of micro-gravity vibration level on the variation of mixture properties were investigated in detail. In this paper, the thermodiffusion experiment was investigated for two different g-jitter vibrations in the presence of a thermal gradient. The cavity is filled with a binary mixture of water and isopropanol with negative Soret. All physical properties including density, mass diffusion and thermodiffusion coefficients were assumed as functions of temperature and concentration. In order to understand the behavior of the mixture during the course of the experiment, five locations in the domain were chosen. It was found that a similarity between g-jitter vibration and induced velocity pattern exist. Micro vibration was found to have a minimal effect on the molecular and thermodiffusion coefficients.


Thermodiffusion Micro-gravity CFD simulation Binary mixture Transient study ISS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chacha, M., Saghir, M.Z.: Solutal-thermo-diffusion convection in a vibrating rectangular cavity. Int. J. Therm. Sci. 44, 1–10 (2005)CrossRefGoogle Scholar
  2. Duhr, S., Braun, D.: Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 103(52), 19678–19682 (2006). doi: 10.1073/pnas.0603873103. Bibcode 2006PNAS..10319678D. PMC 1750914. PMID 17164337 683CrossRefGoogle Scholar
  3. Elhajjar, B.,Mojtabi, A., Catherine, M.,Mojtab, C.: Influence of vertical vibrations on the separation of a binary mixture in a horizontal porous layer heated from below. Int. J. Heat Mass Transfer 52, 165–172 (2009)MATHCrossRefGoogle Scholar
  4. Eslamian, M., Saghir, M.Z.: Microscopic study and modeling of thermodiffusion in binary associating mixtures. Phys. Rev. 061201, 80 (2009)Google Scholar
  5. Joachim, G., Gabriele, S.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)CrossRefGoogle Scholar
  6. Mialdun, A., Ryzhkov, I.I., Melnikov, D.E., Shevtsova, V.: Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment. Phys. Rev. Lett. 084501, 101 (2008)Google Scholar
  7. Mojtabi, M., Razi, Y., Maliwan, K., Mojtabi, A.: Influence of vibrations on Soret-driven convection in porous media. Numer. Heat Transf. A: Appl. 46, 981–993 (2004)CrossRefGoogle Scholar
  8. Pan, S., Jiang, C., Yan, Y., Kawaji, M., Saghir, M.Z.: Theoretical prediction of thermal diffusion in water–methanol, water–ethanol, and water-isopropanol mixtures using the PC-SAFT equation of state. J. Non-Equilib. Thermodyn. 31(1), 47–71 (2006)MATHCrossRefGoogle Scholar
  9. Parsa, A., Saghir, M.Z.: Thermodiffusion in a binary mixture subject on external vibration: effect of variable physical properties. In: ASME/JSME, Honolulu (2011)Google Scholar
  10. Parsa, A., Srinivasan, S., Saghir, M.Z.: Impact of density gradients on the fluid flow inside a vibrating cavity subjected to soret effect. Can. J. Chem. Eng., 1–10 (2012). doi: 10.1002/cjce.21666
  11. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, New York (1980)Google Scholar
  12. Platten, J.K.: Proceedings of the 5th international meeting on thermodiffusion (IMT5). Philos. Mag. 83, 17–18 (2003)Google Scholar
  13. Rogers, J.B., Hrovat, M.K., McPherson, K.: Accelerometer data analusis and presentation techniques. In: NASA (2002)Google Scholar
  14. Ruiz, X., Ramirez-Piscina, L., Casademunt, J.: Numerical studies on fluid low in microgravity condition for confined crystal growth. Astrophys. Space Sci. 276, 135–140 (2001)MATHCrossRefGoogle Scholar
  15. Shevtsova, V.: IVIDIL experiment onboard the ISS. Adv. Space Res. 46(5), 672–679 (2010)CrossRefGoogle Scholar
  16. Shevtsova, V., Ryzhkov, I.I., Melnikov, D., Gaponenko, Y., Miladun, A.: Experimental and theoretical study of vibration-induced thermal convection in low gravity. J. Fluid Mech. 8, 53–82 (2010)CrossRefGoogle Scholar
  17. Shukla, K., Firoozabadi, A.: A new model of thermal coefficients in binary hydrocarbon mixtures. Ind. Eng. Chem. Res. 37, 3331–3342 (1998)CrossRefGoogle Scholar
  18. Srinivasan, S., Saghir, M.Z.: Experimental Approaches to Study Thermodiffusion. Elsevier (2010)Google Scholar
  19. Srinivasan, S., Eslamian,M., Saghir, M.Z.: Estimation of the thermodiffusion coefficients for n-dodecane/n-butane/methane mixtures and comparison with experimental data from foton M3 mission. In: IAC (IAC-09-A2.3.1) (2009)Google Scholar
  20. Srinivasan, S., Dejmeck, M., Saghir, M.Z.: Thermo-solutal-diffusion in high pressure liquid mixtures in the presence of micro-vibrations. Int. J. Therm. Sci. 10, 1016 (2010)Google Scholar
  21. Tai, B., Char, M.: Soret and Dufour effects on free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium with thermal radiation. Int. Commun. Heat Mass Transf. 37, 480–483 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentRyerson UniversityTorontoCanada

Personalised recommendations