Microgravity Science and Technology

, Volume 25, Issue 1, pp 43–58 | Cite as

Hydrothermal Wave Instability in a High-Aspect-Ratio Liquid Bridge of Pr >  200

On-Orbit Experiments in the Japanese Experiment Module ‘Kibo’ Aboard the International Space Station
  • Fumihiko Sato
  • Ichiro UenoEmail author
  • Hiroshi Kawamura
  • Koichi Nishino
  • Satoshi Matsumoto
  • Mitsuru Ohnishi
  • Masato Sakurai
Original Article


The long-duration fluid physics experiments on a thermocapillary-driven flow have been carried out on the Japanese Experiment Module ‘Kibo’ aboard the International Space Station (ISS) since 2008. In these experiments, various aspects of thermocapillary convection in a half-zone (HZ) liquid bridge of high Prandtl number fluid have been examined under the advantages of the long-duration high-quality microgravity environment. In 2010, the authors succeeded to realize nonlinear convective fields in the HZ liquid bridge of rather high aspect ratio. Special attention was paid on to the complex convective fields, especially on the behaviors of the hydrothermal wave (HTW) over the free surface visualized by an infrared camera. In order to evaluate the characteristics of the nonlinear convective behaviors and their transition processes, the authors indicate the images taken by the infrared camera describing the time evolution of HTW, the spatio-temporal diagram, the Fourier analysis, and the pseudo-phase space, reconstructed from the time series of the scalar information of the liquid bridge, that is, surface temperature variation. In this paper, the authors introduce the signature of complex HTW behaviors observed at the long-duration on-orbit experiments, and make comparisons with some previous terrestrial and microgravity experiments.


Liquid bridge Hydrothermal wave International space station Japanese experiment module ‘Kibo’ High Prandtl number fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cröll, A., Muller-Sebert, W., Benz, K.W., Nitsche, R.: Natural and thermocapillary convection in partially confined silicon melt zones. Microgravity Sci. Technol. 3, 204 (1991)Google Scholar
  2. Frank, S., Schwabe, D.: Temporal and spatial elements of thermocapillary convection in floating zones. Exp. Fluids 23, 234 (1997)CrossRefGoogle Scholar
  3. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Kawamura, H., Nishino, K., Matsumoto, S., Ueno, I.: Space experiment of Marangoni convection on international space station. In: Proceedings of the 14th International Heat Transfer Conference (IHTC14), 8–13 August 2010Google Scholar
  5. Kawamura, H., Ueno, I., Ishikawa, T.: Study of thermocapillary flow in a liquid bridge towards an on-orbit experiment aboard the international space station. Adv. Space Res. 29, 611–618 (2002)CrossRefGoogle Scholar
  6. Nishino, K., Torii, K.: A Fluid-dynamically optimum particle tracking method for 2-D PTV: triple pattern matching algorithm. In: Lee, J.S., et al. (eds.) Transport Phenomena in Thermal Engineering, vol. 2, pp. 1411–1416 (1993)Google Scholar
  7. Preisser, F., Schwabe, D., Scharmann, A.: Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545–567 (1983)CrossRefGoogle Scholar
  8. Schwabe, D.: Hydrothermal waves in a liquid bridge with aspect ratio near the Rayleigh limit under microgravity. Phys. Fluids 17, 112104 (2005)CrossRefGoogle Scholar
  9. Smith, M.K., Davis S.H.: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132, 119–144 (1983)zbMATHCrossRefGoogle Scholar
  10. Takens, F.: Dynamical systems of turbulence. In: Lecture Notes in Mathmatics. vol. 898. Springer-Verlag, New York, pp. 366–381 (1981)Google Scholar
  11. Ueno, I., Tanaka, S., Kawamura, H.: Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge. Phys. Fluids 15, 408 (2003)CrossRefGoogle Scholar
  12. Xu, J-J., Davis, S.H.: Convective thermocapillary instabilities in liquid bridges. Phys. Fluids 27, 1102–1107 (1984)zbMATHCrossRefGoogle Scholar
  13. Yano, T., Nishino, K., Kawamura, H., Ueno, I., Matsumoto, S., Ohnishi, M., Sakurai, M.: 3-D PTV measurement of Marangoni convection in liquid bridge in space experiment. Exp. Fluids (2011a). doi: 10.1007/s00348-011-1136-9 Google Scholar
  14. Yano, T., Nishino, K., Kawamura, H., Ueno, I., Matsumoto, S., Ohnishi, M., Sakurai, M.: Space experiment on the instability of Maranogni convection in large liquid bridge - MEIS-4: effect of Prandtl number -. J. Phys. (2011b) doi: 10.1088/1742-6596/327/1/021029 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fumihiko Sato
    • 1
  • Ichiro Ueno
    • 1
    • 2
    Email author
  • Hiroshi Kawamura
    • 3
  • Koichi Nishino
    • 4
  • Satoshi Matsumoto
    • 5
  • Mitsuru Ohnishi
    • 6
  • Masato Sakurai
    • 6
  1. 1.Department of Mechanical EngineeringTokyo University of ScienceChibaJapan
  2. 2.Research Institute for Science & Technology (RIST)Tokyo University of ScienceChibaJapan
  3. 3.Department of Mechanics and System DesignTokyo University of ScienceNaganoJapan
  4. 4.Department of Mechanical Engineering, Graduate School of EngineeringYokohama National UniversityYokohamaJapan
  5. 5.Japan Aerospace Exploration AgencyIbarakiJapan
  6. 6.Japan Aerospace Exploration AgencyTokyoJapan

Personalised recommendations