Advertisement

Microgravity Science and Technology

, Volume 23, Issue 4, pp 439–445 | Cite as

Experimental Study of Laminar Convective Condensation of Pure Vapor Inside an Inclined Circular Tube

  • Yuriy Lyulin
  • Igor Marchuk
  • Sergey Chikov
  • Oleg Kabov
Topical Issue Two-Phase Systems Italy

Abstract

Convective condensation of pure ethanol vapor inside a smooth tube of inner diameter 4.8 mm and of length 200 mm is studied. The experiments have been carried out at temperature 58°C corresponding to the pressure of 440 mbar, the vapor mass velocity varying from 0.24 to 2.04 kg/(m2 s). The dependency of the Heat Transfer Coefficient (HTC) is investigated experimentally both subject to the temperature difference between the saturated vapor and the wall and subject to the condenser inclination. The results show that the HTC reduces with growth of the temperature difference. The dependency of the HTC on inclination has a maximum in the range 15°–35° due to the complex gravity drainage mechanism of the condensed liquid. The results could be useful for development of compact effective cooling systems for space and ground application.

Keywords

In-tube condensation Condenser Surface tension Heat transfer coefficient Inclination angle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhavan-Behabadi, M., Kumar, R., Mohseni, S.: Condensation heat transfer of R-134a inside a microfin tube with different tube inclinations. Int. J. Heat Mass Transfer 50, 4864–4871 (2007)CrossRefGoogle Scholar
  2. Cavallini, A., Bortolin, S., Del Col, D., Matkovic, M., Rossetto, L.: Condensation heat transfer and pressure losses of high- and low-pressure refrigerants flowing in a single circular minichannel. Heat Transf. Eng. 32(2), 1–9 (2011)CrossRefGoogle Scholar
  3. Chato, J.C.: Laminar condensation inside horizontal and inclined tubes. ASHRAE J. 4, 52–60 (1962)Google Scholar
  4. Del Col, D., Cavallini, A., Da Riva, E., Mancin, S., Censi, G.: Shell-and-tube minichannel condenser for low refrigerant charge. Heat Transf. Eng. 31(6), 509–517 (2010)CrossRefGoogle Scholar
  5. Kabov, O.A., Kolyukhin, D.R., Marchuk, I.V., Legros, J.-C.: Steady steam condensation on an extended surface with suction of condensate. J. Eng. Thermophys. 12(1), 199–210 (2003)Google Scholar
  6. Marchuk, I.V., Gluschuk, A.V., Kabov, O.A.: Vapor condensation on nonisothermal curvilinear fins. Tech. Phys. Lett. 32(5), 388–391 (2006)CrossRefGoogle Scholar
  7. Miscevic, M., Médéric, B., Lavieille, P., Soupremanien, U., Serin, V.: Condensation in capillary-driven two-phase loops. Micrograv. Sci. Technol. 19(n °3–4), 116–120 (2007)Google Scholar
  8. Nebuloni, S., Thome John, R.: Film condensation under normal and micro-gravity: effect of channel shape, microgravity science and technology. Int. J. Micrograv. Res. Appl. 19(3–4), 125–127 (2007)Google Scholar
  9. Nebuloni, S., Thome John, R.: Numerical modeling of laminar annular film condensation for different channel shapes. Int. J. Heat Mass Transfer 53(13–14), 2615–2627 (2010)zbMATHCrossRefGoogle Scholar
  10. Nitheanandan, T., Soliman, H.M.: Influence of tube inclination on the flow regime boundaries of condensing steam. Can. J. Chem. Eng. 71, 35–41 (1993)CrossRefGoogle Scholar
  11. Serin, V., Lavieille, P., Miscevic, M.: Miniaturised capillary pumped loops: design and operating limits. Micrograv. Sci. Technol. 21(Suppl. 1), 103–109 (2009)CrossRefGoogle Scholar
  12. Wang, J.C.Y., Ma, Y.: Condensation heat transfer inside vertical and inclined thermosyphons. J. Heat Transfer 113, 777–780 (1991)CrossRefGoogle Scholar
  13. Würfel, R., Kreutzer, T., Fratzscher, W.: Turbulence transfer processes in adiabatic and condensing film flow in an inclined tube. Chem. Eng. Technol. 26, 439–448 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yuriy Lyulin
    • 1
  • Igor Marchuk
    • 2
    • 3
  • Sergey Chikov
    • 1
    • 2
  • Oleg Kabov
    • 1
    • 2
    • 4
  1. 1.Universite Libre de Bruxelles, Chimie-Physique EP-CP165/62, Microgravity Research CenterBrusselsBelgium
  2. 2.Institute of Thermophysics, Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosiborskRussia
  4. 4.Centre of Smart Iterfaces, Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations