Microgravity Science and Technology

, Volume 23, Issue 4, pp 409–425 | Cite as

ESA’s Drop Tower Utilisation Activities 2000 to 2011

  • Ewald Kufner
  • J. Blum
  • N. Callens
  • Ch. Eigenbrod
  • O. Koudelka
  • A. Orr
  • C. C. Rosa
  • A. Vedernikov
  • S. Will
  • J. Reimann
  • G. Wurm
Original Research

Abstract

The European Space Research and Technology Center ESTEC, ESA’s premises in Noordwijk, The Netherlands, has a long lasting cooperation with the ZARM-FAB (Centre of Applied Space Technology and Microgravity—Drop Tower Operation and Service Company) in Bremen on the utilization of the Drop Tower for ground-based microgravity research and space hardware development studies. During the period January 2000 to December 2011 ESA will have procured in total some 840 drops addressing a variety of scientific and technological disciplines. The experiments are usually carried out in campaigns of 15 to 20 drops each, with an annual average of about 5 campaigns. The cooperation agreement between ESA and the ZARM-FAB includes experiment preparation advice by ZARM’s experts, the integration of the hardware into the drop capsule, dedicated safety reviews, the execution of the drop or catapult experiments, the post-flight payload de-integration as well as the handover of acquired data to the experimenters. The experiment hardware itself is provided by the scientists or has to be procured from sources outside of ESA’s drop tower utilization contract. ESA appreciates the cooperation of the ZARM-FAB in Bremen whose drop- and catapult facility provides excellent microgravity quality, is operated by a highly competent, flexible and extremely supportive expert team, allows campaign integration at relatively short notice throughout the entire year, offers real-time experiment operations and immediately after each drop delivers experiment results and provides on-site hardware modification possibilities.

Keywords

ESA/ESTEC Ground-based microgravity studies Drop and catapult experiments Fluids and combustion research Dust and granular matter studies Origin of life experiment Student campaigns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, J.: Astrophysical microgravity experiments with dust particles. Microgravity Sci. Technol. 22, 517–527 (2010)CrossRefGoogle Scholar
  2. Blum, J., Wurm, G.: Experiments on sticking, restructuring and fragmentation of preplanetary dust aggregates. Icarus 143, 138–146 (2000)CrossRefGoogle Scholar
  3. Blum, J., Wurm, G.: The growth mechanism of macroscopic bodies in protoplanetary disks. Ann. Rev. Astron. Astrophys. 46, 21–56 (2008)CrossRefGoogle Scholar
  4. Blum, J., Bruns, S., Rademacher, D., Voss, A., Willenberg, B., Krause, M.: Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas in the transition region between ballistic and diffusive motion. Phys. Rev. Lett. 97, 230601 (2006)CrossRefGoogle Scholar
  5. Blum, J., Levasseur-Regourd, A.C., Muñoz, O., Slobodrian, R.J., Vedernikov, A.: Dust in space. Europhys. News 39(3), 27–29 (2008)CrossRefGoogle Scholar
  6. Botta, O., Martins, Z., Emmenegger, Ch., Dworkin, J.P., Glavin, D.P., Harvey, R.P., Zenoby, R., Bada, J.L., Ehrenfreund, P.: Polycyclic aromatic hydrocarbons and amino acids in meteorites and ice samples from LaPaz Icefield, Antarctica. Meteoritical Soc. Meteoritics Planet. Sci. 43(9), 1465–1480 (2008)CrossRefGoogle Scholar
  7. Heißelmann, D., Blum, J., Fraser, H., Wolling, K.: Microgravity experiments on the collision behavior of Saturnian ring particles. Icarus 206, 424–430 (2010)CrossRefGoogle Scholar
  8. Herrmann, F., Krivov, A.V.: Effects of photophoresis on the evolution of transitional circumstellar disks. A&A 476, 829–839 (2007)CrossRefGoogle Scholar
  9. Hofmeister, P., Blum, J., Heißelmann, D.: The flow of granular matter under reduced-gravity conditions. In: Nakagawa, M., Luding, S. (eds.) Powders & Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media, vol. 1145, pp. 71–74. AIP Conference Proceedings (2009)Google Scholar
  10. Krauss, O., Wurm, G., Mousis, O., Petit, J.-M., Horner, J., Alibert, Y.: The photophoretic sweeping of dust in transient protoplanetary disks. A&A 462, 977–987 (2007)CrossRefGoogle Scholar
  11. Langkowski, D., Teiser, J., Blum, J.: The physics of protoplanetesimal dust agglomerates II. Low velocity collision properties. Astrophys. J. 675, 764–776 (2008)CrossRefGoogle Scholar
  12. Matos, M.R., Leitao, J.C., Andre, R.M., Zambujal, R., Carmelo Rosa, C., Simeao Carvalho, P., Podgorski, T.: New PDLC materials obtained from dispersion of LC under microgravity. 38th COSPAR Scientific Assembly 2010, Materials Sciences in Space, 9th Drop Tower Days, 18–25 july, Bremen, Germany (2010)Google Scholar
  13. Moriue, O., Mikami, M., Kojima, N., Eigenbrod, Ch.: Numerical simulations of the ignition of n-heptane droplets in the transition diameter range from heterogeneous to homogeneous ignition. Proc. Combust. Inst. 30, 1973–1980 (2005)CrossRefGoogle Scholar
  14. Mousis, O., Petit, J.-M., Wurm, G., Krauss, O., Alibert, Y., Horner, J.: Photophoresis as a source of hot minerals in comets. A&A 466, L9–L12 (2007)CrossRefGoogle Scholar
  15. Paraskov, G.B., Wurm, G., Krauss, O.: Impacts into weak dust targets under microgravity and the formation of planetesimals. Icarus 191, 779–789 (2007)CrossRefGoogle Scholar
  16. Paszun, D., Dominik, C.: The influence of grain rotation on the structure of dust aggregates. Icarus 182, 274–280 (2006)CrossRefGoogle Scholar
  17. Paul, W.: Electromagnetic Traps for Charged and Neutral Particles. Rev. Mod. Phys. 62(3), 531–540 (1990)CrossRefGoogle Scholar
  18. Prodi, F., Santachiara, G., Travaini, S., et al.: Measurements of phoretic velocities of aerosol particles in microgravity conditions. Atmos. Res. 82(1–2), 183–189 (2006a)CrossRefGoogle Scholar
  19. Prodi, F., Santachiara, G., Travaini, S., et al.: Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions. Atmos. Res. 82(1–2), 379–384 (2006b)CrossRefGoogle Scholar
  20. Prodi, F., Santachiara, G., Di Matteo, L., Vedernikov, A., Beresnev, S.A., Chernyak, V.G.: Measurements of thermophoretic velocities of aerosol particles in microgravity conditions in different carrier gases. J. Aerosol Sci. 38(6), 645–655 (2007)CrossRefGoogle Scholar
  21. Reimann, J., Will, S.: Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity Sci. Technol. 16, 333–337 (2005)CrossRefGoogle Scholar
  22. Reimann, J., Kuhlmann, S.-A., Will, S.: Investigations on soot-formation in non-buoyant heptane jet diffusion flames by optical techniques. Microgravity Sci. Technol. (2010, this issue)Google Scholar
  23. Takeuchi, T., Krauss, O.: Photophoretic structuring of circumstellar dust disks. APJ 677, 1309–1323 (2008)CrossRefGoogle Scholar
  24. Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R.: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101(4), 737–758 (1980)CrossRefGoogle Scholar
  25. Vedernikov, A.A., Prodi, F., Santachiara, G., Travaini, S., Dubois, F., Legros, J.C.: Thermophoretic measurements in presence of thermal stress convection in aerosols in microgravity conditions of drop tower. Microgravity Sci. Technol. 17(3), 102–105 (2005)CrossRefGoogle Scholar
  26. Wurm, G., Haack, H.: Outward transport of CAIs during FU-Orionis events. M&PS 44, 689–699 (2009)Google Scholar
  27. Wurm, G., Krauss, O.: Concentration and sorting of chondrules and CAIs in the late solar nebula. Icarus 180, 487–495 (2006)CrossRefGoogle Scholar
  28. Wurm, G., Paraskov, G., Krauss, O.: Ejection of dust granules by elastic waves in collisions between mm- and cm-sized dust aggregates at 16.5 to 37.5 m/s impact velocity. Phys. Rev. E 71, 021304–021310 (2005)CrossRefGoogle Scholar
  29. Wurm, G., Teiser, J., Bischoff, A., Haack, H., Roszjar, J.: Experiments on the photophoretic motion of chondrules and dust aggregates—indications for the transport of matter in protoplanetary disks. Icarus 208, 482–491 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ewald Kufner
    • 1
  • J. Blum
    • 2
  • N. Callens
    • 3
  • Ch. Eigenbrod
    • 4
  • O. Koudelka
    • 5
  • A. Orr
    • 6
  • C. C. Rosa
    • 7
  • A. Vedernikov
    • 8
  • S. Will
    • 9
  • J. Reimann
    • 9
  • G. Wurm
    • 10
  1. 1.European Space Agency ESA/ESTEC, HSO-APFNoordwijkThe Netherlands
  2. 2.University of BraunschweigBraunschweigGermany
  3. 3.ESAC, PPC-PEMadridSpain
  4. 4.ZARM-FABBremenGermany
  5. 5.University Graz/Joanneum ResearchGrazAustria
  6. 6.ESA/ESTEC, HSO-ASPNoordwijkThe Netherlands
  7. 7.University PortoPortoPortugal
  8. 8.ULB-MRCBrusselsBelgium
  9. 9.University BremenBremenGermany
  10. 10.University Duisburg-EssenEssenGermany

Personalised recommendations