Advertisement

Microgravity Science and Technology

, Volume 23, Issue 3, pp 287–292 | Cite as

Degenerate Quantum Gases in Microgravity

  • Jan Rudolph
  • Naceur Gaaloul
  • Yeshpal Singh
  • Holger Ahlers
  • Waldemar Herr
  • Torben A. Schulze
  • Stephan Tobias Seidel
  • Christina Rode
  • Vladimir Schkolnik
  • Wolfgang Ertmer
  • Ernst Maria Rasel
  • Hauke MüntingaEmail author
  • Thorben Könemann
  • Andreas Resch
  • Sven Herrmann
  • Claus Lämmerzahl
  • Tim van Zoest
  • Hansjörg Dittus
  • Anika Vogel
  • André Wenzlawski
  • Klaus Sengstock
  • Nadine Meyer
  • Kai Bongs
  • Markus Krutzik
  • Wojciech Lewoczko-Adamczyk
  • Max Schiemangk
  • Achim Peters
  • Michael Eckart
  • Endre Kajari
  • Stefan Arnold
  • Gerrit Nandi
  • Wolfgang P. Schleich
  • Reinhold Walser
  • Tilo Steinmetz
  • Theodor W. Hänsch
  • Jakob Reichel
Original Article

Abstract

Clouds of ultra-cold atoms and especially Bose–Einstein condensates (BEC) provide a source for coherent matter-waves in numerous earth bound experiments. Analogous to optical interferometry, matter-wave interferometers can be used for precision measurements allowing for a sensitivity orders of magnitude above their optical counterparts. However, in some respects the presence of gravitational forces in the lab limits experimental possibilities. In this article, we report about a compact and robust experiment generating Bose–Einstein condensates in the drop tower facility in Bremen, Germany. We also present the progress of building the succeeding experiment in which a two species atom interferometer will be implemented to test the weak equivalence principle with quantum matter.

Keywords

BEC Atom interferometry Inertial Sensors Microgravity Equivalence principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)CrossRefGoogle Scholar
  2. Berman, P.R.: Atom Interferometry. Academic Press, London (1996)Google Scholar
  3. Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969 (1995)CrossRefGoogle Scholar
  4. Dieckmann, K., Spreeuw, R.J.C., Weidemüller, M., Walraven, J.T.M.: Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58(5), 3891 (1998)CrossRefGoogle Scholar
  5. Fray, S., Diez, C.A., Hänsch, T.W., Weitz, M.: Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93(24), 240404 (2004)CrossRefGoogle Scholar
  6. Gaaloul, N., Ahlers, H., Schulze, T., Singh, Y., Seidel, S., Herr, W., Ertmer, W., Rasel, E.: Quantum tests of the equivalence principle with atom interferometry. Acta Astronaut. 67(9–10), 1059–1062 (2001)Google Scholar
  7. Hagley, E.W., Deng, L., Kozuma, M., Trippenbach, M., Band, Y.B., Edwards, M., Doery, M., Julienne, P.S., Helmerson, K., Rolston, S.L., Phillips, W.D.: Measurement of the coherence of a Bose-Einstein condensate. Phys. Rev. Lett. 83(16), 3112 (1999)CrossRefGoogle Scholar
  8. Hänsel, W., Hommelhoff, P., Hänsch, T.W., Reichel, J.: Bose-Einstein condensation on a microelectronic chip. Nature 413(6855), 498–501 (2001)CrossRefGoogle Scholar
  9. Kasevich, M., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67(2), 181 (1991)CrossRefGoogle Scholar
  10. Müller, H., Chiow, S., Long, Q., Herrmann, S., Chu, S.: Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett. 100(18), 180405 (2008)CrossRefGoogle Scholar
  11. Pasquini, T.A., Saba, M., Jo, G., Shin, Y., Ketterle, W., Pritchard, D.E., Savas, T.A., Mulders, N.: Low velocity quantum reflection of Bose-Einstein condensates. Phys. Rev. Lett. 97(9), 093201 (2006)CrossRefGoogle Scholar
  12. Peters, A., Chung, K.Y., Chu, S.: High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)CrossRefGoogle Scholar
  13. Reichel, J., Hänsel, W., Hänsch, T.W.: Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83(17), 3398 (1999)zbMATHCrossRefGoogle Scholar
  14. Schlamminger, S., Choi, K., Wagner, T.A., Gundlach, J.H., Adelberger, E.G.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100(4), 041101 (2008)CrossRefGoogle Scholar
  15. Scott, R.G., Martin, A.M., Fromhold, T.M., Sheard, F.W.: Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: the role of dynamical excitations. Phys. Rev. Lett. 95(7), 073201 (2005)CrossRefGoogle Scholar
  16. van Zoest, T., Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Seidel, S.T., Ertmer, W., Rasel, E., Eckart, M., Kajari, E., Arnold, S., Nandi, G., Schleich, W.P., Walser, R., Vogel, A., Sengstock, K., Bongs, K., Lewoczko-Adamczyk, W., Schiemangk, M., Schuldt, T., Peters, A., Konemann, T., Muntinga, H., Lammerzahl, C., Dittus, H., Steinmetz, T., Hansch, T.W., Reichel, J.: Bose-Einstein condensation in microgravity. Science 328(5985), 1540–1543 (2010)CrossRefGoogle Scholar
  17. Varoquaux, G., Nyman, R.A., Geiger, R., Cheinet, P., Landragin, A., Bouyer, P.: How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle. New J. Phys. 11(11), 113010 (2009)CrossRefGoogle Scholar
  18. Vogel, A., Schmidt, M., Sengstock, K., Bongs, K., Lewoczko, W., Schuldt, T., Peters, A., Van Zoest, T., Ertmer, W., Rasel, E., Steinmetz, T., Reichel, J., Könemann, T., Brinkmann, W., Göklü, E., Lämmerzahl, C., Dittus, H., Nandi, G., Schleich, W., Walser, R.: Bose-Einstein condensates in microgravity. Appl. Phys. B 84(4), 663–671 (2006)CrossRefGoogle Scholar
  19. Will, C.M.: The confrontation between general relativity and experiment. In: Living Rev. Relativity, vol. 9 (2006)Google Scholar
  20. Williams, J.G., Turyshev, S.G., Boggs, D.H.: Lunar laser ranging tests of the equivalence principle with the earth and moon. Int. J. Mod. Phys. D 18(7), 1129–1175 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jan Rudolph
    • 1
  • Naceur Gaaloul
    • 1
  • Yeshpal Singh
    • 1
  • Holger Ahlers
    • 1
  • Waldemar Herr
    • 1
  • Torben A. Schulze
    • 1
  • Stephan Tobias Seidel
    • 1
  • Christina Rode
    • 1
  • Vladimir Schkolnik
    • 1
  • Wolfgang Ertmer
    • 1
  • Ernst Maria Rasel
    • 1
  • Hauke Müntinga
    • 2
    Email author
  • Thorben Könemann
    • 2
  • Andreas Resch
    • 2
  • Sven Herrmann
    • 2
  • Claus Lämmerzahl
    • 2
  • Tim van Zoest
    • 3
  • Hansjörg Dittus
    • 3
  • Anika Vogel
    • 4
  • André Wenzlawski
    • 4
  • Klaus Sengstock
    • 4
  • Nadine Meyer
    • 5
  • Kai Bongs
    • 5
  • Markus Krutzik
    • 6
  • Wojciech Lewoczko-Adamczyk
    • 6
  • Max Schiemangk
    • 6
  • Achim Peters
    • 6
  • Michael Eckart
    • 7
  • Endre Kajari
    • 7
  • Stefan Arnold
    • 7
  • Gerrit Nandi
    • 7
  • Wolfgang P. Schleich
    • 7
  • Reinhold Walser
    • 8
  • Tilo Steinmetz
    • 9
  • Theodor W. Hänsch
    • 9
  • Jakob Reichel
    • 10
  1. 1.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany
  2. 2.ZARM—Universität BremenBremenGermany
  3. 3.DLRInstitut für RaumfahrtsystemeBremenGermany
  4. 4.Institut für Laser-PhysikUniversität HamburgHamburgGermany
  5. 5.Midlands Ultracold Atom Research Centre, School of Physics & AstronomyUniversity of BirminghamBirminghamUK
  6. 6.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  7. 7.Institut für QuantenphysikUniversität UlmUlmGermany
  8. 8.Institut für Angewandte PhysikTechnische Universität DarmstadtDarmstadtGermany
  9. 9.Max-Planck-Institut für Quantenoptik and Sektion Physik der Ludwig-Maximilians-UniversitätMünchenGermany
  10. 10.Laboratoire Kastler-Brossel de l’Ecole Normale SupérieureUniversité Pierre et Marie-Curie-Paris 6, CNRSParisFrance

Personalised recommendations