Advertisement

Microgravity Science and Technology

, Volume 22, Issue 4, pp 529–538 | Cite as

Testing Fundamental Physics with Degenerate Quantum Gases in Microgravity

  • Sven HerrmannEmail author
  • Ertan Göklü
  • Hauke Müntinga
  • Andreas Resch
  • Tim van Zoest
  • Hansjörg Dittus
  • Claus Lämmerzahl
Original Article

Abstract

The realization of a Bose Einstein condensate in the Bremen drop tower as achieved by the QUANTUS collaboration in 2007 has added a new field to microgravity research: the study of freely evolving degenerate quantum gases at largely extended evolution times. Here we give an outlook on some experiments that could be done with such ultra-cold quantum gases in this unique laboratory and on other microgravity platforms to study fundamental physics questions. In particular we consider experiments that could employ the increased precision of matter wave interferometers in microgravity to search for low-energy phenomena of quantum gravity.

Keywords

Fundamental physics Precision measurements Quantum gravity Matterwave optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfaro, J., Morales-Técotl, H.A., Urrutia, L.F.: Loop quantum gravity and light propagation. Phys. Rev., D 65, 103509 (2002)CrossRefMathSciNetGoogle Scholar
  2. Amelino-Camelia, G.: Gravity-wave interferometers as quantum-gravity detectors. Nature 398, 216–218 (1999)CrossRefGoogle Scholar
  3. Amelino-Camelia, G., Piran, T.: Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys. Rev., D 64, 036005 (2001)CrossRefGoogle Scholar
  4. Amelino-Camelia, G., et al.: Tests of quantum gravity from observations of big gamma-ray bursts. Nature 393, 763–765 (1998)CrossRefGoogle Scholar
  5. Amelino-Camelia, G., Lämmerzahl, C., Mercati, F., Tino, G.: Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms. Phys. Rev. Lett. 103, 171302 (2009)CrossRefGoogle Scholar
  6. Anderson, M.H., et al.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)CrossRefGoogle Scholar
  7. Andrews, M.R., Townsend, C.G., Miesner, H.-J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Observation of interference between two Bose condensates. Science 275, 637 (1997)CrossRefGoogle Scholar
  8. Arvanitaki, A., et al.: How to test atom and neutron neutrality with atom interferometry. Phys. Rev. Lett. 100, 120407 (2008)CrossRefGoogle Scholar
  9. Bize, S., et al.: Cold atom clocks and applications. J. Phys. B 38, 449 (2005)CrossRefGoogle Scholar
  10. Bongs, K., et al.: Waveguide for Bose-Einstein condensates. Phys. Rev., A 63, 031602(R) (2001)CrossRefGoogle Scholar
  11. Bose, S.N.: Plancks Gesetz und Lichtquantenhypothese, Z. f. Physik 26, 178 (1924)CrossRefGoogle Scholar
  12. Breuer, H.-P., Göklü, E., Lämmerzahl, C.: Metric fluctuations and decoherence. Class. Quantum Gravity 26, 105012 (2009)CrossRefGoogle Scholar
  13. Chiow, S.-W., Herrmann, S., Chu, S., Müller, H.: Noise-immune conjugate large-area atom interferometers. Phys. Rev. Lett. 103, 050402 (2009)CrossRefGoogle Scholar
  14. Chu, S., et al.: Laser Trapping of Neutral Particles, p. 71. Scientific American (1992)Google Scholar
  15. Damour, T., Esposito-Farese, G.: Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 9, 2093 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Damour, T., Polyakov, A.M.: The string dilation and a least coupling principle. Nucl. Phys., B 423, 532 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  17. Damour, T., Polyakov, A.M.: String theory and gravity. Gen. Relativ. Gravit. 26, 1171 (1996)CrossRefMathSciNetGoogle Scholar
  18. Damour, T., Piazza, F., Veneziano, G.: Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 89, 081 601 (2002a)Google Scholar
  19. Damour, T., Piazza, F., Veneziano, G.: Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev., D 66, 046 007 (2002b)MathSciNetGoogle Scholar
  20. Einstein, A.: Quantentheorie des idealen einatomigen Gases. Sitzungber. d. kgl. Preuss. Akad. d. Wiss. 22, 256 (1924)Google Scholar
  21. Fixler, J.B., et al.: Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74 (2007)CrossRefGoogle Scholar
  22. Gähler, R., Klein, A.G., Zeilinger, A.: Neutron optical tests of nonlinear wave mechanics. Phys. Rev., A 23, 1611 (1981)CrossRefGoogle Scholar
  23. Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys., A 10, 145–166 (1995)CrossRefGoogle Scholar
  24. Göklü, E., Lämmerzahl, C.: Metric fluctuations and the weak equivalence principle. Class. Quantum Gravity 25, 105012 (2008)CrossRefGoogle Scholar
  25. Göklü, E., Lämmerzahl, C.: Metric fluctuations and decoherence. Class. Quantum Gravity 26, 225010 (2009)CrossRefGoogle Scholar
  26. Hogan, C.J.: arXiv:0905.4803v8 [gr-qc] (2010). Accessed 8 Jan 2010
  27. Lämmerzahl, C.: The search for quantum gravity effects I. Appl. Phys., B 84, 551–562 (2006a)CrossRefGoogle Scholar
  28. Lämmerzahl, C.: The search for quantum gravity effects II. Appl. Phys., B 84, 563–573 (2006b)CrossRefGoogle Scholar
  29. Lämmerzahl, C., Lorek, D., Dittus, H.: Confronting Finsler space-time with experiment. Gen. Relativ. Gravit. 41, 1345 (2009)zbMATHCrossRefGoogle Scholar
  30. Lamoreaux, S.K.: A review of the experimental tests of quantum mechanics. Int. J. Mod. Phys. 7, 6691, (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  31. Lamporesi, G., et al.: Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 100, 050801 (2008)CrossRefGoogle Scholar
  32. Lewoczko-Adamczyk, W., et al.: Rubidium Bose-Einstein condensate under microgravity. Int. J. Mod. Phys. D 16, 2447–2454 (2007)CrossRefGoogle Scholar
  33. McGuirk, J.M., et al.: Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev., A 65, 033608 (2002)CrossRefGoogle Scholar
  34. Ng, J.Y.: Selected topics in Planck-scale physics. Mod. Phys. Lett. A 18, 1073–1098 (2003)CrossRefGoogle Scholar
  35. Pasquini, T., et al.: Quantum reflection from a solid surface at normal incidence. Phys. Rev. Lett. 93, 223201 (2004)CrossRefGoogle Scholar
  36. Pasquini, T., et al.: Low velocity quantum reflection of Bose-Einstein condensates. Phys. Rev. Lett. 97, 093201 (2006)CrossRefGoogle Scholar
  37. Peters, A., Chung, K., Chu, S.: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)CrossRefGoogle Scholar
  38. Schlamminger, S., et al.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)CrossRefGoogle Scholar
  39. Scott, R., et al.: Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: the role of dynamical excitations. Phys. Rev. Lett. 95, 073201 (2005)CrossRefGoogle Scholar
  40. Shimizu, F., Fujita, J.: Giant quantum reflection of neon atoms from a ridged silicon surface. J. Phys. Soc. Jpn. 71, 5 (2002)CrossRefGoogle Scholar
  41. Shimony, A.: Proposed neutron interferometer test of some nonlinear variants of wave mechanics. Phys. Rev., A 20, 394 (1979)CrossRefGoogle Scholar
  42. Simsarian, J.E., et al.: Imaging the phase of an evolving Bose-Einstein condensate wave function. Phys. Rev. Lett. 85, 2040 (2000)CrossRefGoogle Scholar
  43. Stern, G., et al.: Light-pulse atom interferometry in microgravity. Eur. Phys. J., D 53, 353–357 (2009)CrossRefGoogle Scholar
  44. Sorrentino, F., et al.: SAI: a compact atom interferometer for future space missions. Jour. Micrograv. Res. (2010). arXiv:1003.1481. Accessed 7 March 2010
  45. Stockton, J.K., Wu, X., Kasevich, M.A.: Bayesian estimation of differential interferometer phase. Phys. Rev., A 76, 033613 (2007)CrossRefGoogle Scholar
  46. Toboul, P., et al.: Comptes Rendus de l Academie des Sciences, Series IV. Physics 2, 1271–1286 (2001)Google Scholar
  47. Unnikrishnan, C.S., Gillies, G.T.: The electrical neutrality of atoms and of bulk matter. Metrologia 41, S125–S135 (2004)CrossRefGoogle Scholar
  48. Varoquax, G., et al.: How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle. New J. Phys. 11, 113010 (2008)CrossRefGoogle Scholar
  49. Vogel, A., et al.: Bose-Einstein condensates in microgravity. Appl. Phys., B 84, 663–667 (2006)CrossRefGoogle Scholar
  50. Wang, H.-T.C., Bingham, R., Mendoca, J.-T.: Quantum gravitational decoherence of matter waves. Class. Quantum Gravity 23, L59–65 (2006)CrossRefGoogle Scholar
  51. Wetterich, C.: Crossover quintessence and cosmological history of fundamental constants. Phys. Lett., B 561, 10 (2003a)zbMATHCrossRefMathSciNetGoogle Scholar
  52. Wetterich, C.: Probing quintessence with time variation of couplings. Astropart. Phys. 10, 2 (2003b)Google Scholar
  53. Wicht, A., et al.: A preliminary measurement of the fine structure constant based on atom interferometry. Phys. Scr., T 102, 82 (2002)CrossRefGoogle Scholar
  54. Wolf, P., Chapelet, F., Bize, S., Clairon, A.: Cold atom clock test of Lorentz invariance in the matter sector. Phys. Rev. Lett. 96, 060801 (2006)CrossRefGoogle Scholar
  55. Yu, I.A., et al.: Evidence for universal quantum reflection of hydrogen from liquid He. Phys. Rev. Lett. 71, 1589 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sven Herrmann
    • 1
    Email author
  • Ertan Göklü
    • 1
  • Hauke Müntinga
    • 1
  • Andreas Resch
    • 1
  • Tim van Zoest
    • 2
  • Hansjörg Dittus
    • 2
  • Claus Lämmerzahl
    • 1
  1. 1.Center of Applied Space TechnologyUniversität BremenBremenGermany
  2. 2.Institut für RaumfahrtsystemeBremenGermany

Personalised recommendations