Microgravity Science and Technology

, Volume 23, Issue 2, pp 151–158 | Cite as

Bubbly Jet Impingement in Different Liquids

Original Article

Abstract

The impingement of bubbly jets in distilled water and ethanol has been experimentally studied on ground. An experimental apparatus for the study of jet impingement on ground and in microgravity has been designed. The opposed-jet configuration with changeable orientation is used in order to study which is the better disposition to achieve an efficient mixing process. The impact angle between jets that can be changed from 0° (frontal collision) up to 90° (perpendicular collision). The impinging jets are introduced into a test tank full of liquid by means of two bubble injectors. The bubble generation method, insensitive to gravity level for low Bond numbers, is based on the creation of a slug flow inside a T-junction of capillary tubes of 0.7 mm of diameter. Bubble velocities at the injector outlet and generation frequencies can be controlled by changing gas and liquid flow rates. Individual bubble properties and coalescence events, as well as the whole jet structure are analyzed from the images recorded by a high speed camera. Bubble velocities are compared with the velocity field of a single-phase jet. Rate of coalescence between bubbles is found higher in ethanol than in water, creating a higher dispersion in bubble sizes.

Keywords

Jet impingement Bubbly jet Two-phase flow Jet mixing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasyev, Y.D., Voropayev, S.I., Potylitsin, P.G., Filippov, I.A.: Interaction of vortex dipoles: the theory and laboratory experiment. Atmos. Ocean. Phys. 30(5), 665–671 (1995)Google Scholar
  2. Alekseenko, S.V., Markovich, D.M., Semenov, V.I.: Turbulent structure of a gas-liquid impinging jet. Fluid Dyn. 37(5), 684–694 (2002)MATHCrossRefGoogle Scholar
  3. Arias, S., Ruiz, X., Casademunt, J., Ramírez-Piscina, L., González-Cinca, R.: Experimental study of a microchannel bubble injector for microgravity applications. Microgravity Sci. Technol. 21, 107–111 (2009)CrossRefGoogle Scholar
  4. Carrera, J., Ruiz, X., Ramírez-Piscina, L., Casademunt, J., Dreyer, M.: Generation of a monodisperse microbubble jet in microgravity. AIAA J. 46(8), 2010–2019 (2008)CrossRefGoogle Scholar
  5. Champion, M., Libby, P.: Reynolds stress description of opposed and impinging turbulent jets. Part I: closely spaced opposed jets. Phys. Fluids, A 5(1), 203–216 (1993)Google Scholar
  6. Chesters, A.K.: The modelling of coalescence process in fluid-liquid dispersions: a review of current understanding. Trans. I. Chem. E 69(A4), 259–270 (1991)Google Scholar
  7. Chou, C.-P., Chen, J.-Y., Janicka, J., Mastorakos, E.: Modeling of turbulent opposed-jet mixing flows with \(\tilde{\kappa}\)\(\tilde{\epsilon}\) model and second order closure. Int. J. Heat Mass Transfer 47, 1023–1035 (2004)MATHCrossRefGoogle Scholar
  8. Colin, C., Riou, X., Fabre, J.: Bubble coalescence in gas-liquid flow at microgravity conditions. Microgravity Sci. Technol. 20, 243–246 (2008)CrossRefGoogle Scholar
  9. Eckestein, J.-Y., Chen, J., Chou, C.-P., Janicka, J.: Modeling of turbulent mixing in opposed jet configuration: one-dimensional monte carlo probability density function simulation. In: Proceedings of the Combustion Institute, vol. 28, pp. 141–148 (2000)Google Scholar
  10. Kamp, A. M., Chesters, A. K., Colin, C., Fabre, J.: Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. Int. J. Multiph. Flow 27, 1363–1396 (2001)MATHCrossRefGoogle Scholar
  11. Lee, C.-H., Erickson, L.E., Glasgow, L.A.: Bubble breakup and coalescence in turbulent gas-liquid dispersion. Chem. Eng. Commun. 59, 65–84 (1987)CrossRefGoogle Scholar
  12. Lehr, F., Millies, M., Mewes, D.: Bubble size distributions and flow fields in bubble columns. AIChE J. 48(11), 2426–2443 (2002)CrossRefGoogle Scholar
  13. Lima Neto, I.E., Zhu, D.Z., Rajaratnam, N.: Bubbly jets in stagnant water. Int. J. Multiph. Flow 34, 1130–1141 (2008a)CrossRefGoogle Scholar
  14. Lima Neto, I.E., Zhu, D.Z., Rajaratnam, N.: Horizontal injection of gas-liquid mixtures in a water tank. J. Hydraul. Eng. 134(12), 1722–1731 (2008b)CrossRefGoogle Scholar
  15. Luo, H., Svendsen, H.F.: Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 42(5), 1225–1233 (1996)CrossRefGoogle Scholar
  16. Phorecki, R., Moniuk, W., Bielski, P., Zdrójkowski, A.: Modelling of the coalescence-redispersion processes in bubble columns. Chem. Eng. Sci. 56, 6157–6164 (2001)CrossRefGoogle Scholar
  17. Prince, M.J., Blanch, H.W.B.: Coalescence and breakup in air-sparged bubble columns. AIChE J. 36(10), 1485–1499 (1990)CrossRefGoogle Scholar
  18. Saien, J., Zonouzian, S.A.E., Dehkordi, A.M.: Investigation of a two impinging-jets contacting device for liquid–liquid extraction processes. Chem. Eng. Sci. 61, 3942–3950 (2006)CrossRefGoogle Scholar
  19. Schlichting, H.: Boundary-Layer Theory. McGraw-Hill Classic Textbook Reissue (1979)Google Scholar
  20. Suñol, F., González-Cinca, R.: Opposed bubbly jets at different impact angles: jet structure and bubble properties. Int. J. Multiph. Flow 36, 682–689 (2010)CrossRefGoogle Scholar
  21. Tsujimoto, K., Shakouchi, T., Sasazaki, S., Toshitake, A.: Direct numerical simulation of jet mixing control using combined jets. JSME Int. J., Ser. B 49(4), 966–973 (2006)CrossRefGoogle Scholar
  22. Varely, J.: Submerged gas–liquid jets: bubble size prediction. Chem. Eng. Sci. 50, 901–905 (1995)CrossRefGoogle Scholar
  23. Voropayev, S.I., Afanasyev, Y.D.: Two-dimensional vortex-dipole interactions in a stratified fluid. J. Fluid. Mech. 236, 665–689 (1992)CrossRefGoogle Scholar
  24. Voropayev, S.I., Afanasyev, Y.D., Korabel, V.N., Filippov, I.A.: On the frontal collision of two round jets in water. Phys. Fluids 15(11), 3429–3433 (2003)CrossRefMathSciNetGoogle Scholar
  25. Weifeng, L., Zhigang, S., Haifeng, L., Fuchen, W., Zunhong, Y.: Experimental and numerical study on stagnation point offset of turbulent opposed jets. Chem. Eng. J. 138, 283–294 (2008)CrossRefGoogle Scholar
  26. Wood, P., Hrymak, A., Yeo, R., Johnson, D., Tyagi, A.: Experimental and computational studies of the fluid mechanics in an opposed jet mixing head. Phys. Fluids, A 3(5), 1362–1368 (1991)CrossRefGoogle Scholar
  27. Yuan, C.C.L., Krstić, M., Bewley, T.R.: Active control of jet mixing. IEE Proc., Control Theory Appl. 151(6), 763–772 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Departament de Física AplicadaUniversitat Politècnica de CatalunyaCastelldefelsSpain

Personalised recommendations