Microgravity Science and Technology

, Volume 22, Issue 4, pp 499–505 | Cite as

Investigations on Soot Formation in Heptane Jet Diffusion Flames by Optical Techniques

  • Jörg Reimann
  • Stephan-André Kuhlmann
  • Stefan WillEmail author
Original Article


Two-dimensional optical measurements were performed for the investigation of soot formation of n-heptane laminar gas-jet diffusion flames under buoyant and non-buoyant conditions utilizing the Bremen Drop Tower. Techniques employed were laser-induced incandescence for the determination of soot concentration and primary particle sizes and two-color emission pyrometry with a three-point Abel inversion for the measurement of temperature fields. In line with former experiments for other hydrocarbon fuels the investigations revealed drastic differences in the sooting behavior between flames under normal and microgravity. With the lack of buoyancy maximum soot temperatures were reduced by roughly 300 K and maximum primary particle sizes were more than doubled.


Soot diagnostics Laser-induced incandescence Microgravity Laminar diffusion flames n-heptane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12217_2010_9204_MOESM1_ESM.pdf (48 kb)
Investigations on Soot Formation in Heptane Jet Diffusion Flames by Optical Techniques (PDF 47.5 KB)


  1. Berta, P., Aggarwal, S., Puri, I., Granata, S., Faravelli, T., Ranzi, E.: Experimental and numerical investigation of n-heptane/air counterflow nonpremixed flame structure. J. Propuls. Power 24, 797–804 (2008)CrossRefGoogle Scholar
  2. Bladh, H., Johnsson, J., Bengtsson, P.E.: On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size. Appl. Phys. B 90, 109–125 (2008)CrossRefGoogle Scholar
  3. Chen, G., Gomez, A.: Co-flow laminar diffusion flames of monodisperse sprays: structure, evaporation and microgravity effects. Combust. Sci. Technol. 115, 177–201 (1996)CrossRefGoogle Scholar
  4. Cignoli, F., De Iuliis, S., Manta, V., Zizak, G.: Two-dimensional two-wavelength emission technique for soot diagnostics. Appl. Opt. 40, 5370–5378 (2001)CrossRefGoogle Scholar
  5. Dasch, C.J.: One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31, 1146–1152 (1992)CrossRefGoogle Scholar
  6. di Stasio, S., Massoli, P.: Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry. Meas. Sci. Technol. 5, 1453–1465 (1994)CrossRefGoogle Scholar
  7. Diez, F.J., Aalburg, C., Sunderland, P.B., Urban, D.L., Yuan, Z.G., Faeth, G.M.: Soot properties of laminar jet diffusion flames in microgravity. Combust. Flame 156, 1514–1524 (2009)CrossRefGoogle Scholar
  8. Geigle, K.P., Schneider-Kühnle, Y., Tsurikov, M.S., Hadef, R., Lückerath, R., Krüger, V., Stricker, W., Aigner, M.: Investigation of laminar pressurized flames for soot model validation using SV-CARS and LII. Proc. Combust. Inst. 30, 1645–1653 (2005)CrossRefGoogle Scholar
  9. Hall, R.J., Bonczyk, P.A.: Sooting flame thermometry using emission/absorption tomography. Appl. Opt. 29, 4590–4598 (1990)CrossRefGoogle Scholar
  10. Kong, W., Liu, F.: Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities. Combust. Theory Model. 13, 993–1023 (2009)zbMATHCrossRefGoogle Scholar
  11. Konsur, B., Megaridis, C.M., Griffin, D.W.: Soot aerosol properties in laminar soot-emitting microgravity nonpremixed flames. Combust. Flame 118, 509–520 (1999)CrossRefGoogle Scholar
  12. Ku, J.C., Griffin, D.W., Greenberg, P.S., Roma, J.: Buoyancy-induced differences in soot morphology. Combust. Flame 102, 216–218 (1995)CrossRefGoogle Scholar
  13. Kuhlmann, S.A., Reimann, J., Will, S.: On heat conduction between laser-heated nanoparticles and a surrounding gas. J. Aerosol Sci. 37, 1696–1716 (2006)CrossRefGoogle Scholar
  14. Manzello, S.L., Choi, M.Y.: Morphology of soot collected in microgravity droplet flames. Int. J. Heat Mass Transfer 45, 1109–1116 (2002)CrossRefGoogle Scholar
  15. Manzello, S.L., Yozgatligil, A., Choi, M.Y.: An experimental investigation of sootshell formation in microgravity droplet combustion. Int. J. Heat Mass Transfer 47, 5381–5385 (2004)CrossRefGoogle Scholar
  16. Michelsen, H.A.: Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012–7044 (2003)CrossRefGoogle Scholar
  17. Reimann, J., Will, S.: Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity Sci. Technol. 16, 333–337 (2005)CrossRefGoogle Scholar
  18. Reimann, J., Kuhlmann, S.A., Will, S.: Improvement in soot concentration measurements by laser-induced incandescence (LII) through a particle size correction. Combust. Flame 153, 650–654 (2008)CrossRefGoogle Scholar
  19. Santoro, R.J., Shaddix, C.R.: Laser-induced incandescence. In: Kohse-Höinghaus, K., Jeffries, J.B. (eds.) Applied Combustion Diagnostics, pp. 252–286. Taylor & Francis, New York (2002)Google Scholar
  20. Schulz, C., Kock, B., Hofmann, M., Michelsen, H., Will, S., Bougie, B., Suntz, R., Smallwood, G.: Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83, 333–354 (2006)CrossRefGoogle Scholar
  21. Snelling, D.R., Thomson, K.A., Smallwood, G.J., Gülder, Ö.L., Weckman, E.J., Fraser, R.A.: Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J. 40, 1789–1795 (2002)CrossRefGoogle Scholar
  22. Urban, D.L., Yuan, Z.G., Sunderland, P.B., Linteris, G.T., Lin, K.C., Dai, Z., Sun, K., Faeth, G.M.: Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames. AIAA J. 36, 1346–1360 (1998)CrossRefGoogle Scholar
  23. Vaglieco, B.M., Beretta, F., D’Alessio, A.: In situ evaluation of the soot refractive index in the UV-Visible from the measurement of the scattering and extinction coefficients in rich flames. Combust. Flame 79, 259–271 (1990)CrossRefGoogle Scholar
  24. Vander Wal, R.L.: Laser-induced incandescence measurements in low-gravity. Microgravity Sci. Technol. 10, 66–74 (1997)Google Scholar
  25. Walsh, K.T., Fielding, J., Smooke, M.D., Long, M.B.: Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proc. Combust. Inst. 28, 1973–1979 (2000)CrossRefGoogle Scholar
  26. Weikl, M.C., Seeger, T., Wendler, M., Sommer, R., Beyrau, F., Leipertz, A.: Validation experiments for spatially resolved one-dimensional emission spectroscopy temperature measurements by dual-pump CARS in a sooting flame. Proc. Combust. Inst. 32, 745–752 (2009)CrossRefGoogle Scholar
  27. Will, S., Schraml, S., Leipertz, A.: Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. Opt. Lett. 20, 2342–2344 (1995)CrossRefGoogle Scholar
  28. Will, S., Schraml, S., Leipertz, A.: Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII). Proc. Combust. Inst. 26, 2277–2284 (1996)Google Scholar
  29. Will, S., Schraml, S., Bader, K., Leipertz, A.: Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Appl. Opt. 37, 5647–5658 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jörg Reimann
    • 1
  • Stephan-André Kuhlmann
    • 1
  • Stefan Will
    • 1
    Email author
  1. 1.Technische ThermodynamikUniversität BremenBremenGermany

Personalised recommendations