Microgravity Science and Technology

, Volume 22, Issue 3, pp 295–303 | Cite as

Thermocapillary Migration of Deformable Bubbles at Moderate to Large Marangoni Number in Microgravity

  • Jian-Fu ZhaoEmail author
  • Zhen-Dong Li
  • Hui-Xiong Li
  • Jing Li
Original Article


Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.


Thermocapillary migration Bubble Level-set method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balasubramaniam, R., Lavery, J.E.: Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers. Numer. Heat Transf. A 16(2), 175–187 (1989)CrossRefGoogle Scholar
  2. Balasubramaniam, R., Subramanian, R.S.: Thermocapillary bubbles migration-thermal boundary layers for large Marangoni numbers. Int. J. Multiph. Flow 22(3), 593–612 (1996)zbMATHCrossRefGoogle Scholar
  3. Bratukhin, Y.K.: Termokapillyarnyy dreyf kapel’ki vyazkoy zhidkosti. Izv. Akad. Nauk SSSR, Meh. Zhidk. Gaza 5, 156–161 (1975)Google Scholar
  4. Chen, J.C., Lee, Y.T.: Effect of surface deformation on thermocapillary bubble migration. AIAA J. 30(4), 993–998 (1992)CrossRefGoogle Scholar
  5. Crespo, A., Jimenez-Fernandez, J.: Thermocapillary migration of bubbles at moderately large Reynolds numbers. In: Rath, H.J. (ed.) Microgravity Fluid Mechanics IUTAM Symposium, Bremen 1991, pp. 405–411. Springer, Berlin (1992a)Google Scholar
  6. Crespo, A., Jimenez-Fernandez, J.: Thermocapillary migration of bubbles: a semi-analytical solution for large Marangoni numbers. In: Proceedings of the 8th European Symposium on Materials Fluid Science (ESA SP-333), 12–16 April 1992, pp. 193–196. Brussels, Belgium (1992b)Google Scholar
  7. Crespo, A., Migoya, E., Manuel, E.: Thermocapillary migration of bubbles at large Reynolds number. Int. J. Multiph. Flow 24(4), 685–692 (1998)zbMATHCrossRefGoogle Scholar
  8. Hadland, P.H., Balasubramaniam, R., Wozniak, G., Subramanian, R.S.: Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp. Fluids 26, 240–248 (1999)CrossRefGoogle Scholar
  9. Haj-Hariri, H., Shi, Q., Borhan, A.: Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids 9(4), 845–855 (1997)CrossRefGoogle Scholar
  10. Kang, Q., Cui, H.L., Hu, L., Duan, L.: On-board experimental study of bubble thermocapillary migration in a recoverable satellite. Microgravity Sci. Technol. 20(2), 67–71 (2008)CrossRefGoogle Scholar
  11. Ma, X.J.: Numerical simulation and experiments on liquid drops in a vertical temperature gradient in a liquid of nearly the same density. PhD thesis, Clarkson University, Potsdam, New York, USA (1998)Google Scholar
  12. Merritt, R.M.: Bubble migration and interactions in a vertical temperature gradient. PhD thesis, Clarkson University, Potsdam (1988)Google Scholar
  13. Nas, S., Tryggvason, G.: Computational investigation of the thermal migration of bubbles and drops. In: Proceedings of th eASME Winter Annual Meeting (AMD-174/FED-175), pp. 71–83 (1993)Google Scholar
  14. Oliver, D.L.R., De Witt, K.J.: Transient motion of a gas bubble in a thermal gradient in low gravity. J. Colloid Interface Sci. 164, 263–268 (1994)CrossRefGoogle Scholar
  15. Osher, S., Sethian, J.A.: Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Shankar, N., Subramanian, R.S.: The stokes motion of a gas bubble due to interfacial tension gradients at low to moderate Marangoni numbers. J. Colloid Interface Sci. 123(2), 512–522 (1988)CrossRefGoogle Scholar
  17. Son, G., Dhir, V.K.: A level set method for analysis of film boiling on an immersed solid surface. Numer. Heat Transf. B 52(1–2), 153–177 (2007)CrossRefGoogle Scholar
  18. Subramanian, R.S.: Slow migration of a gas bubble in a thermal gradient. AIChE J 27(4), 646–654 (1981)CrossRefMathSciNetGoogle Scholar
  19. Subramanian, R.S.: Thermocapillary migration of bubbles and droplets. Adv. Space Res. 3(5), 145–153 (1983)CrossRefMathSciNetGoogle Scholar
  20. Subramanian, R.S., Balasubramaniam, R.: The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  21. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)zbMATHCrossRefGoogle Scholar
  22. Szymczyk, J.A., Siekmann, J.: Numerical calculation of the thermocapillary motion of a bubble under microgravity. Chem. Eng. Commun. 69(1), 129–147 (1988)CrossRefGoogle Scholar
  23. Thompson, R.L., DeWitt, K.J., Labus, T.L.: Marangoni bubble motion phenomenon in zero gravity. Chem. Eng. Commun. 5, 299–314 (1980)CrossRefGoogle Scholar
  24. Treuner, M., Galindo, V., Gerbeth, G., Langbein, D., Rath, H.J.: Thermocapillary bubble migration at high Reynolds and Marangoni numbers under low gravity. J. Colloid Interface Sci. 179, 114–127 (1996)CrossRefGoogle Scholar
  25. Welch, S.W.J.: Transient thermocapillary migration of deformable bubbles. J. Colloid Interface Sci. 208, 500–508 (1998)CrossRefGoogle Scholar
  26. Yin, Z., Gao, P., Hu, W., Chang, L.: Thermocapillary migration of nondeformable drops. Phys. Fluids 20, 082101 (2008)CrossRefGoogle Scholar
  27. Young, N.O., Goldstein, J.S., Block, M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jian-Fu Zhao
    • 1
    Email author
  • Zhen-Dong Li
    • 1
  • Hui-Xiong Li
    • 2
  • Jing Li
    • 1
  1. 1.Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations