Microgravity Science and Technology

, Volume 23, Issue 2, pp 249–261 | Cite as

Simulation of Microgravity by Magnetic Levitation and Random Positioning: Effect on Human A431 Cell Morphology

  • Maarten J. A. Moes
  • Jeroen C. Gielen
  • Robert-Jan Bleichrodt
  • Jack J. W. A. van Loon
  • Peter C. M. Christianen
  • Johannes Boonstra
Open Access
Original Article


Simulation of weightlessness is a desired replenishment for research in microgravity since access to space flights is limited. In real microgravity conditions, the human epidermoid cell line A431 exhibits specific changes in the actin cytoskeleton resulting ultimately in the rounding-up of cells. This rounding of A431 cells was studied in detail during exposure to Random Positioning Machine (RPM) rotation and magnetic levitation. Random rotation and magnetic levitation induced similar changes in the actin morphology of A431 cells that were also described in real microgravity. A transient process of cell rounding and renewed spreading was observed in time, illustrated by a changing actin cytoskeleton and variation in the presence of focal adhesions. However, side effects of both methods easily can lead to false linking of cellular responses to simulated microgravity. Therefore further characterization of both methods is required.


Actin Magnetic levitation RPM Simulated microgravity Weightlessness Focal adhesion FAK 


  1. Albrecht-Buehler, G.: The simulation of microgravity conditions on the ground. ASGSB Bull. 5, 3–10 (1992)Google Scholar
  2. Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 470–470 (1991a)CrossRefGoogle Scholar
  3. Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys. III France 1, 1423–1428 (1991b)CrossRefGoogle Scholar
  4. Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)CrossRefMathSciNetGoogle Scholar
  5. Boonstra, J.: Growth factor-induced signal transduction in adherent mammalian cells is sensitive to gravity. FASEB J. 13, S35–S42 (1999)Google Scholar
  6. Boonstra, J., Moes, M.J.: Signal transduction and actin in the regulation of G1-phase progression. Crit. Rev. Eukaryot. Gene Expr. 15, 255–276 (2005)Google Scholar
  7. Borst, A.G., van Loon, J.J.W.A.: Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009)CrossRefGoogle Scholar
  8. Briegleb, W.: Some quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull. 5, 23 (1992)Google Scholar
  9. Carmeliet, G., Vico, L., Bouillon, R.: Space flight: a challenge for normal bone homeostasis. Crit. Rev. Eukaryot. Gene Expr. 11, 131–144 (2001)Google Scholar
  10. Christianen, P.C.M., Shklyrevskiy, I.O., Boamfa, M.I., Maan, J.C.: Alignment of molecular materials in high magnetic fields. Physica B 346347, 255–261 (2004)CrossRefGoogle Scholar
  11. de Groot, R.P., Rijken, P.J., den Hertog, J., Boonstra, J., Verkleij, A.J., de Laat, S.W., Kruijer, W.: Microgravity decreases c-fos induction and serum response element activity. J. Cell Sci. 97, 33–38 (1990)Google Scholar
  12. de Groot, R.P., Rijken, P.J., Boonstra, J., Verkleij, A.J., de Laat, S.W., Kruijer, W.: Epidermal growth factor-induced expression of c-fos is influenced by altered gravity conditions. Aviat. Space Environ. Med. 62, 37–40 (1991a)Google Scholar
  13. de Groot, R.P., Rijken, P.J., den Hertog, J., Boonstra, J., Verkleij, A.J., de Laat, S.W., Kruijer, W.: Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes. Exp. Cell Res. 197, 87–90 (1991b)CrossRefGoogle Scholar
  14. Denegre, J.M., Valles, J.M. Jr, Lin, K., Jordan, W.B., Mowry, K.L.: Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci. U.S.A. 95, 14729–14732 (1998)CrossRefGoogle Scholar
  15. dos Remedios, C.G., Chhabra, D., Kekic, M., Dedova, I.V., Tsubakihara, M., Berry, D.A., Nosworthy, N.J.: Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473 (2003)Google Scholar
  16. Fitts, R.H., Riley, D.R., Widrick, J.J.: Functional and structural adaptations of skeletal muscle to microgravity. J. Exp. Biol. 204, 3201–3208 (2001)Google Scholar
  17. Fritsch-Yelle, J.M., Charles, J.B., Jones, M.M., Wood, M.L.: Microgravity decreases heart rate and arterial pressure in humans. J. Appl. Physiol. 80, 910–914 (1996)Google Scholar
  18. Geim, A.: Everyone’s magnetism. Phys. Today 51, 36–39 (1998)CrossRefGoogle Scholar
  19. Genersch, E., Schneider, D.W., Sauer, G., Khazaie, K., Schuppan, D., Lichtner, R.B.: Prevention of EGF-modulated adhesion of tumor cells to matrix proteins by specific EGF receptor inhibition. Int. J. Cancer 75, 205–209 (1998)CrossRefGoogle Scholar
  20. Glade, N., Beaugnon, E., Tabony, J.: Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation. Biophys. Chemist. 121, 1–6 (2006)CrossRefGoogle Scholar
  21. Grimm, D., Bauer, J., Kossmehl, P., Shakibaei, M., Schöberger, J., Pickenhahn, H., Schulze-Tanzil, G., Vetter, R., Eilles, C., Paul, M., Cogoli, A.: Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J. 16, 604–606 (2002)Google Scholar
  22. Hammond, T.G., Lewis, F.C., Goodwin, T.J., Linnehan, R.M., Wolf, D.A., Hire, K.P., Campbell, W.C., Benes, E., O’Reilly, K.C., Globus, R.K., Kaysen, J.H.: Gene expression in space. Nat. Med. 5, 359 (1999)CrossRefGoogle Scholar
  23. Heijna, M.C.R., Poodt, P.W.G., Tsukamoto, K., de Grip, W.J., Christianen, P.C.M., Maan, J.C., Hendrix, J.L.A., van Enckevort, W.J.P., Vlieg, E.: Magnetically controlled gravity for protein crystal growth. Appl. Phys. Lett. 90, 264105 (2007)CrossRefGoogle Scholar
  24. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M.: Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. 105, 53–70 (1992)CrossRefGoogle Scholar
  25. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., Buchen, B.: Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203, S187–S197 (1997)CrossRefGoogle Scholar
  26. Hughes-Fulford, M.: Function of the cytoskeleton in gravisensing during spaceflight. Adv. Space Res. 32, 1585–1593 (2003)CrossRefGoogle Scholar
  27. Infanger, M., Kossmehl, P., Shakibaei, M., Bauer, J., Kossmehl-Zorn, S., Cogoli, A., Curcio, F., Oksche, A., Wehland, M., Kreutz, R., Paul, M., Grimm, D.: Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324, 267–277 (2006)CrossRefGoogle Scholar
  28. Liu, Y., Wang, E.: Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genom. Proteom. Bioinform. 6, 29–41 (2008)CrossRefGoogle Scholar
  29. Maret, G., Dransfeld, K.: Biomolecules and Polymers in High Steady Magnetic Fields in Strong and Ultrastrong Magnetic Fields and their Applications, Chapter 4. Springer, Berlin (1985)Google Scholar
  30. Meloni, M.A., Galleri, G., Pippia, P., Cogoli-Greuter, M.: Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma 229, 243–249 (2006)CrossRefGoogle Scholar
  31. Nelson, J.M., Fry, D.W.: Cytoskeletal and morphological changes associated with the specific suppression of the epidermal growth factor receptor tyrosine kinase activity in A431 human epidermoid carcinoma. Exp. Cell Res. 233, 383–390 (1997)CrossRefGoogle Scholar
  32. Papaseit, C., Pochon, N., Tabony, J.: Microtubule self-organization is gravity-dependent. Proc. Natl. Acad. Sci. U.S.A. 97, 8364–8368 (2000)CrossRefGoogle Scholar
  33. Pardo, S.J., Patel, M.J., Sykes, M.C., Platt, M.O., Boyd, N.L., Sorescu, G.P., Xu, M., van Loon, J.J., Wang, M.D., Jo, H.: Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am. J. Physiol., Cell Physiol. 288, C1211–C1221 (2005)CrossRefGoogle Scholar
  34. Patel, M.J., Chang, K.H., Sykes, M.C., Talish, R., Rubin, C., Jo, H.: Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts. J. Cell. Biochem. 106, 306–316 (2009)CrossRefGoogle Scholar
  35. Perenboom, J.A.A.J., Wiegers, S.A.J., Christianen, P.C.M., Zeitler, U., Maan, J.C.: Research in high magnetic fields: the installation at the university of Nijmegen. J. Low Temp. Phys. 133, 181–201 (2003)CrossRefGoogle Scholar
  36. Rijken, P.J., de Groot, R.P., Briegleb, W., Kruijer, W., Verkleij, A.J., Boonstra, J., de Laat, S.W.: Epidermal growth factor-induced cell rounding is sensitive to simulated microgravity. Aviat. Space Environ. Med. 62, 32–36 (1991a)Google Scholar
  37. Rijken, P.J., Hage, W.J., van Bergen en Henegouwen, P.M., Verkleij, A.J., Boonstra, J.: Epidermal growth factor induces rapid reorganization of the actin microfilament system in human A431 cells. J. Cell Sci. 100, 491–499 (1991b)Google Scholar
  38. Schenck, J.F.: Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann. Rev. Acad. Sci. 649, 285 (1992)CrossRefGoogle Scholar
  39. Schwarzenberg, M., Pippia, P., Meloni, M.A., Cossu, G., Cogoli-Greuter, M., Cogoli, A.: Microgravity simulations with human lymphocytes in the free fall machine and in the random positioning machine. J. Gravit. Physiol. 5, P23–P26 (1998)Google Scholar
  40. Tabony, J., Rigotti, N., Glade, N., Cortès, S.: Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations. Biophys. Chem. 127, 172–180 (2007)CrossRefGoogle Scholar
  41. Torbet, J., Dickens, M.J.: Orientation of skeletal muscle actin in strong magnetic fields. FEBS Lett. 173, 403–406 (1984)CrossRefGoogle Scholar
  42. Ulbrich, C., Westphal, K., Baatout, S., Wehland, M., Bauer, J., Flick, B., Infanger, M., Kreutz, R., Vadrucci, S., Egli, M., Cogoli, A., Derradji, H., Pietsch, J., Paul, M., Grimm, D.: Effects of basic fibroblast growth factor on endothelial cells under conditions of simulated microgravity. J. Cell. Biochem. 104, 1324–1341 (2008)CrossRefGoogle Scholar
  43. Ullrich, O., Huber, K., Lang, K.: Signal transduction in cells of the immune system in microgravity. Cell. Commun. Signal. 6, 9 (2008)CrossRefGoogle Scholar
  44. Uva, B.M., Masini, M.A., Sturla, M., Prato, P., Passalacqua, M., Giuliani, M., Tagliafierro, G., Strollo, F.: Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res. 934, 132–139 (2002)CrossRefGoogle Scholar
  45. Valiron, O., Peris, L., Rikken, G., Schweitzer, A., Saoudi, Y., Remy, C., Job, D.: Cellular disorders induced by high magnetic fields. J. Magn. Reson. Imaging 22, 334–340 (2005)CrossRefGoogle Scholar
  46. Valles, J.M. Jr, Lin, K., Denegre, J.M., Mowry, K.L.: Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation. Biophys. J. 73, 1130–1133 (1997)CrossRefGoogle Scholar
  47. van Loon, J.J.W.A.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)CrossRefGoogle Scholar
  48. Versari, S., Villa, A., Helder, M.N., Doulabi, B.Z., van Loon, J., Bradamante, S.: Effects of gravity on proliferation and differentiation of adipose tissue-derived stem cells. J. Gravit. Physiol. 14, 127–128 (2007a)Google Scholar
  49. Versari, S., Villa, A., Bradamante, S., Maier, J.A.M.: Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim. Biophys. Acta 1773, 1645–1652 (2007b)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Maarten J. A. Moes
    • 1
  • Jeroen C. Gielen
    • 2
  • Robert-Jan Bleichrodt
    • 1
  • Jack J. W. A. van Loon
    • 3
  • Peter C. M. Christianen
    • 2
  • Johannes Boonstra
    • 1
  1. 1.Cellular Architecture and Dynamics, Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
  2. 2.High Field Magnet Laboratory, Institute for Molecules and MaterialsRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Dutch Experiment Support Center (DESC), Department of Oral Cell Biology, ACTAUniversity of Amsterdam—Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations