Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity

  • Bruce E. Hammer
  • Louis S. Kidder
  • Philip C. Williams
  • Wayne Wenzhong Xu
Original Article


Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed.


Magnetic levitation MC3T3 Osteoblastic cell Microgravity 


  1. Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys. III. 1, 1423–1428 (1991)CrossRefGoogle Scholar
  2. Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)CrossRefMathSciNetGoogle Scholar
  3. Brooks, J.S., Reavis, J.A., Medwood, R.A., Stalcup, T.F., Meisel, M.W.: New opportunities in science, materials, and biological systems in the low-gravity (magnetic levitation) environment. J. Appl. Phys. 87, 6194–6199 (2000)CrossRefGoogle Scholar
  4. Carmeleit, G., Nys, G., Bouillon, R.: Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Miner. Res. 12(5), 786–794 (1997)CrossRefGoogle Scholar
  5. Carmeliet, G., Nys, G., Stockmans, I., Bouillon, R.: Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 22, 139S–143S (1998)CrossRefGoogle Scholar
  6. Chomczynski, P., Sacchi, N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987)CrossRefGoogle Scholar
  7. Coleman, C.G., Gonzalez-Villalobos, R.A., Allen, P.A., Johanson, K., Guevorkian, K., Valles, J.M., Hammond, T.G.: Diamagnetic levitation changes, growth, cell cycle, and gene expresssion of saccharomyces cerevisiae. Biotech. Bioeng. 98(4), 854–863 (2007)CrossRefGoogle Scholar
  8. Fitzgerald, J., Hughes-Fulford, M.: Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. FASEB J. 13, 553–557 (1999)Google Scholar
  9. Guevorkian, K., Valles, J.M.: Swimming paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Appl. Phys. Lett. 84(24), 4863–4865 (2004)CrossRefGoogle Scholar
  10. Hammond, T.G., Lewis, F.C., Goodwin, T.J., Linnehan, R.M., Wolf, D.A., Hire, K.P., Campbell, W.C., Benes, E., O’Reilly, K.C., Globus, R.K., Kaysen, J.H.: Gene expression in space. Nat. Med. 5, 359–360 (1999)CrossRefGoogle Scholar
  11. Harris, S.A., Zhang, M., Kidder, L.S., Evans, G.L., Spelsberg, T.C., Turner, R.T.: Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression. Bone 26, 325–331 (2000)CrossRefGoogle Scholar
  12. Hatton, J.P., Poodran, M., Li, C.-F., Luzzio, C., Hughes-Fulford, M.: A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J. Bone Miner. Res. 18(1), 58–66 (2003)CrossRefGoogle Scholar
  13. Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P.: Summaries of affymetrix genechip probe level data. Nucleic Acids Res. 31, e15 (2003)CrossRefGoogle Scholar
  14. Jacobs, C.R., Yellowley, C.E., Davis, B.R., Zhou, Z., Cimbala, J.M., Donahue, H.J.: Differential effects of steady versus oscillating flow on bone cells. J. Biomech. 31, 969–976 (1998)CrossRefGoogle Scholar
  15. Kaysen, J.H., Campbell, W.C., Majewski, R.R., Goda, F.O., Navar, G.L., Lewis, F.C., Goodwin, T.J., Hammond, T.G.: Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J. Membr. Biol. 168, 77–89 (1999)CrossRefGoogle Scholar
  16. Pavalko, F.M., Chen, N.X., Turner, C.H., Burr, D.B., Atkinson, S., Hsieh, Y.-F., Qiu, J., Duncan, R.L.: Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275, C1591–C1601 (1998)Google Scholar
  17. Sarkar, D., Nagaya, T., Koga, K., Nomura, Y., Gruener, R., Seo, H.: Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J. Bone Miner. Res. 15(3), 489–498 (2000)CrossRefGoogle Scholar
  18. Sudo, H., Kodama, H.A., Amagi, Y., Yamamoto, S., Kasai, S.: In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 96(1), 191–198 (1983)CrossRefGoogle Scholar
  19. Ueno, S., Iwasaka, M.: Properties of diamagnetic fluid in high gradient magnetic fields. J. Appl. Phys. 75(10), 7177–7179 (1994)CrossRefGoogle Scholar
  20. Valles, J.M., Lin, K., Denegre, J.M., Mowry, K.L.: Stable magnetic field gradient levitation of xenopus laevis: toward low-gravity simulation. Biophys. J. 73, 1130–1133 (1997)CrossRefGoogle Scholar
  21. Valles, J.M., Wasserman, S.R.R.M., Schweidenback, C., Edwardson, J., Denegre, J.M., Mowry, K.L.: Processes that occur before second cleavage determine third cleavage orientation in xenopus. Exp. Cell Res. 274(1), 112–118 (2002)CrossRefGoogle Scholar
  22. Yuge, L., Hide, I., Kumagai, T., Kumei, Y., Takeda, S., Kanno, M., Sugiyama, M., Kataoka, K.: Cell differentiation and p38MARK cascade are inhibited in human osteoblasts cultured in a three-dimensional clinostat. In Vitro Cell. Dev. Biol.-Animal. 39, 89–97 (2003)CrossRefGoogle Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • Bruce E. Hammer
    • 1
  • Louis S. Kidder
    • 1
  • Philip C. Williams
    • 1
  • Wayne Wenzhong Xu
    • 2
  1. 1.Department of RadiologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Supercomputing Institute for Advanced Computational ResearchUniversity of MinnesotaMinneapolisUSA

Personalised recommendations