Microgravity Science and Technology

, Volume 21, Issue 1–2, pp 203–207

The Human Centrifuge

Open Access
Original Article

Abstract

Life on Earth has developed at unit gravity, 9.81 m/s2, which was a major factor especially when vertebrates emerged from water onto land in the late Devonian, some 375 million years ago. But how would nature have evolved on a larger planet? We are able to address this question simply in experiments using centrifuges. Based on these studies we have gained valuable insights in the physiological process in plants and animals. They adapt to a new steady state suitable for the high-g environments applied. Information on mammalian adaptations to hyper-g is interesting or may be even vital for human space exploration programs. It has been shown in long duration animal hypergravity studies, ranging from snails, rats to primates, that various structures like muscles, bones, neuro-vestibular, or the cardio-vascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Centrifuge studies involving humans are mostly in the order of hours. The current work on human centrifuges are all focused on short arm systems to apply short periods of artificial gravity in support of long duration space missions in ISS or to Mars. In this paper we will address the possible usefulness of a large human centrifuge on Earth. In such a centrifuge a group of humans can be exposed to hypergravity for, in principle, an unlimited period of time like living on a larger planet. The input from a survey under scientists working in the field of gravitational physiology, but also other disciplines, will be discussed.

Keywords

Hypergravity Artificial gravity Microgravity Weightlessness Centrifuge Gravity continuum Mars Moon Human exploration Human hypergravity habitat 

References

  1. Arlashchenko, N.I., Bokhov, B.B., Busygin, V.E., Volokhova, N.A., Grigoriev, Yu.G., Polyakov, B.I., Farber, Yu.V.: Body reactions to prolonged Coriolis acceleration. Translated from: Byulleten’ Eksperimental’ noi Biologii i Meditsiny. Bull. Eksp. Biol. Med. 55(8), 28–32 (1963) (translated)Google Scholar
  2. Beams, H.W., Kessel, R.G.: Development of centrifuges and their use in the study of living cells. Int. Rev. Cytol. 100, 15–48 (1987)CrossRefGoogle Scholar
  3. Burton, R.R., Meeker, L.J., Raddin, J.H.: Centrifuges for studying the effects of sustained acceleration on human physiology. IEEE Eng. Med. Bio. 56–65 (1991), MarchGoogle Scholar
  4. Cardus, D., McTaggart, W.G.: Artificial gravity as a countermeasure on physiological deconditioning in space. Adv. Space Res. 14(8), 409–414 (1994)CrossRefGoogle Scholar
  5. Clément, G., Pavy-Le Traon, A.: Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur. J. Physiol 92, 235–248 (2004)Google Scholar
  6. Clément, G., Slenzka, K. (Eds.) Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space. Springer, New York (2006)Google Scholar
  7. Convertino, V.A.: Interaction of semicircular canal stimulation with carotid baroreceptor reflex control of heart rate. J. Vestib. Res. 8(1), 43–9 (1998)CrossRefGoogle Scholar
  8. Davis, B.L., Cavanagh, P.R., Perry, J.E.: Locomotion in a rotating space station: a synthesis of new data with established concepts. Gait Posture 2, 157–65 (1994)CrossRefGoogle Scholar
  9. Edmonds, J.L., Jarchow, T., Young, L.R.: A stair-stepper for exercising on a short-radius centrifuge. Aviat. Space Environ. Med. 78(2), 129–34 (2007)Google Scholar
  10. Gerathewohl, S.J. (Eds.) Space flight simulator. ABMA Rep. DSP-TR-1–59: dates 16 March 1959. Described In: Zero G. decvices and weightless simulators by NAS-NRC Publ. 781, 28–34 (1961)Google Scholar
  11. Grigoriev, A.I., Morukov, B.V., Vorobiev, D.V.: Water and electrolyte studies during long-term missions onboard the space stations Salyut and Mir. Clin. Investig. 72, 169–89 (1994)CrossRefGoogle Scholar
  12. Hall, T.W.: Artificial gravity visualization, empathy and design. AIAA San Jose (CA), USA, paper 7321, pp. 1–22 (2006)Google Scholar
  13. Hastreiter, D., Young, L.R.: Effects of a gravity gradient on human cardiovascular responses. J. Gravit. Physiol. 4(2), 23–26 (1997)Google Scholar
  14. Hemmersbach, R., Volkmann, D., Hader, D.P.: Graviorientation in protists and plants. J. Plant Physiol. 154(1), 1–15 (1999)Google Scholar
  15. Horneck, G., Facius, R., Rettberg, P., Reitz, G., Baumstark-Khan, C., Gerzer, R., Reichert, M., Seboldt, W., Manzey, D.: HUMEX study on the survivability and adaption of humans to long-duration exploratory missions. Edt.: R.A. Harris. ESA SP1264. Noordwijk, The Netherlands (2003)Google Scholar
  16. Iwasaki, K., Hirayanagi, K.I., Sasaki, T., Kinoue, T., Ito, M., Miyamoto, A., Igarashi, M., Yajima, K.: Effects of repeated long duration +2Gz load on man’s cardiovascular function. Acta Astronaut. 42(1–8), 175–83 (1998)CrossRefGoogle Scholar
  17. Johnston, R.S., Dietlein, L.F. (eds.): Biomedical results from Skylab. Washington, DC: NASA SP-377 (1977)Google Scholar
  18. Lackner, J.R., DiZio, P.: Artificial gravity as a countermeasure in long-duration space flight. J. Neurosci. Res. 62, 169–72 (2000)CrossRefGoogle Scholar
  19. Lansberg, M.P.: A Primer of Space Medicine. Elsevier Publishing Co. Amsterdam (1960)Google Scholar
  20. Lansdorp, B., Kruijff, M., Heide, E.J., van der.: The need for MARS-g in LEO, IAC-03-IAA-10.1.05, pp. 1–8 (2003)Google Scholar
  21. Manzey, D.: Human missions to Mars: new psychological challenges and research issues. Acta Astronaut. 55(3–9), 781–90 (2004)CrossRefGoogle Scholar
  22. Miles, S.: The effect of changes in barometric pressures on maximum breathing capacity. Am. J. Physiol. 137, 85–6 (1957)Google Scholar
  23. NASA workshop: Artificial gravity. Live-aboard studies workshop. NASA-Ames, USA, (2005) 14–15 JuneGoogle Scholar
  24. Newsom, B.D.: Habitability factors in a rotating space station. Space Life Sci. 3, 192–97 (1972)CrossRefGoogle Scholar
  25. Olson, J.J.: Antartica: a review of recent medical research. Trends Pharmacol. Sci. 23(10), 17–19 (2002)CrossRefGoogle Scholar
  26. Palinkas, L.A.: Phychological issues in long-term space flight: overview. Grav. Space Biol. Bull. 14(2), 25–33 (2001)Google Scholar
  27. Pancratz, D.J., Bomar, J.B. Jr, Raddin, J.H. Jr.: A new source for vestibular illusions in high agility aircraft. Aviat. Space Environ. Med. 65(12), 1130–3 (1994)Google Scholar
  28. Pawelczyk, J.A.: J. Physiol. 572(3), 607–608 (2006)Google Scholar
  29. Pedoto, A., Nandi, J., Yang, Z.-J., et al.: Beneficial effect of hyperbaric oxygen pretreatment on lipopoly saccharide-induced shock in rats. Clin. Exp. Pharmacol. Physiol. 30(7), 482–488 (2003)CrossRefGoogle Scholar
  30. Ravera, R.J.: Physiological limits on Skylab B wobble during an artificial gravity experiment. NASA-CR-113979, pp. 1–12 (1970)Google Scholar
  31. Reason, J.T., Graybiel, A.: Progressive adaptation to Coriolis accelerations associated with one rpm increments of velocity in the slow-rotation room. Aerosp. Med. 41(1), 73–79 (1970)Google Scholar
  32. Sawka, M.N., Latzka, W.A., Mountain, S.J., Cadarette, B.S., Kolka, M.A., Kraning, K.K., Gonzalez, R.R.: Physiological tolerance to uncompensable heat, intermittent exercise, field vs. laboratory. Physiol. Med. Sci. Sports Exerc. 33, 422–430 (2001)CrossRefGoogle Scholar
  33. Scott, J.M., Esch, B.T., Goodman, L.S., Bredin, S.S., Haykowsky, M.J., Warburton, D.E.: Cardiovascular consequences of high-performance aircraft maneuvers: implications for effective countermeasures and laboratory-based simulations. Appl. Physiol. Nutr. Metab. 32(2), 332–9 (2007)CrossRefGoogle Scholar
  34. Singh, B.: Worldwide Human Centrifuge Status. The +Gzette. Publication of the International Acceleration Research Workshop Community. 5(1), 17–19 (2005)Google Scholar
  35. Solonin, Yu.G., Katsyuba, E.A.: Thermoregulation and blood circulation in adults during short-term exposure to extreme temperatures. Hum. Physiol. 29(2), 188–94 (2003)CrossRefGoogle Scholar
  36. Tou, J., Ronca, A., Grindeland, R., Wade, C.: Models to study gravitational biology of Mammalian reproduction. Biol. Reprod. 67(6), 1681–7 (2002)CrossRefGoogle Scholar
  37. van Loon, J.J.W.A., Tanck, E., van Nieuwenhoven, F.A., Snoeckx, L.H.E.H., de Jong, H.A.A., Wubbels, R.J.: A brief overview of animal hypergravity studies. J. Gravit. Physiol. 12(1), 5–10 (2005)Google Scholar
  38. Wade, C.E.: Responses across the gravity continuum: hypergravity to microgravity. Adv. Space Biol. Med. 10, 225–45 (2005)CrossRefGoogle Scholar
  39. Warren, L.E, Paloski, W.H., Young, L.R.: Artificial gravity as a multi-system countermeasure to bed rest deconditioning: preliminary results. 22nd ASGSB Annual Meeting, Arlington (VA), USA (2006) 2–5 NovemberGoogle Scholar
  40. Wunder C.C., L.O. Lutherer, C.H. Dodge.: Survival and growth of organisms during life-long exposure to high gravity. Aerospace Med. 5–11 (1963) MarchGoogle Scholar
  41. Wuyts, F.: Preliminary experience with the ESA short arm human centrifuge. ELGRA News (2007) 25 Sept.Google Scholar
  42. Young, L.R.: Artificial Gravity Considerations for a Mars Exploration Mission. Ann. N. Y. Acad. Sci. 871, 367–378 (1999)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Dutch Experiment Support Center (DESC), Dept. Oral Cell BiologyACTA-Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations