Advertisement

Microgravity Science and Technology

, Volume 21, Issue 1–2, pp 107–111 | Cite as

Experimental Study of a Microchannel Bubble Injector for Microgravity Applications

  • S. Arias
  • X. Ruiz
  • J. Casademunt
  • L. Ramírez-Piscina
  • R. González-Cinca
Original Article

Abstract

We perform a quantitative characterization of a microbubble injector in conditions relevant to microgravity. The injector pregenerates a slug flow by using a capillary T-junction, whose operation is robust to changes in gravity level. We address questions regarding the performance under different injection conditions. In particular we focus on the variation of both gas and liquid flow rates. The injection performance is characterized by measuring bubble injection frequency and bubble sizes. We obtain two distinct working regimes of the injector and identify the optimal performance as the crossover region between them.

Keywords

Bubble Microgravity Multiphase flow Gas injection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhunia, A., Pais, S.C., Kamotani, Y., Kim, I.: Bubble formation in a coflow configuration in normal and reduced gravity. AIChE J. 44, 1499–1509 (1998)CrossRefGoogle Scholar
  2. Carrera, J., Ruiz, X., Ramírez-Piscina, L., Casademunt, J., Dreyer, M.: Generation of a monodisperse microbubble jet in microgravity. AIAA Journal (20078, in press)Google Scholar
  3. Di Marco, P., Grassi, W., Memoli, G., Takamasa, T., Tomiyama, A., Hosokawa, S.: Influence of electric field on single gas-bubble growth and detachment in microgravity. Int. J. Multiph. Flows 29, 559–578 (2003)zbMATHCrossRefGoogle Scholar
  4. Forrester, S.E., Rielly, C.D.: Bubble formation from cylindrical, flat and concave sections exposed to a strong liquid cross-flow. Chem. Eng. Sci. 53, 1517–1527 (1998)CrossRefGoogle Scholar
  5. Iacona, E., Herman, C., Chang, S., Liu, Z.: Electric field effect on bubble detachment in reduced gravity environment. Exp. Therm. Fluid Sci. 31, 121–126 (2006)CrossRefGoogle Scholar
  6. Kulkarni, A.A., Joshi, J.B.: Bubble formation and bubble rise in gas-liquid system: a review. Ind. Eng. Chem. Res. 44, 5873–5931 (2005)CrossRefGoogle Scholar
  7. Liu, H., Vandu, C.O., Krishna, R.: Hydrodynamics of Taylor flow in vertical capillaries: flow regime, bubble rise velocity, liquid slug length and pressure drop. Ind. Eng. Chem. Res. 44, 4884–4897 (2005)CrossRefGoogle Scholar
  8. Pampering, O., Rath, H.J.: Influence of buoyancy on bubble formation at submerged orifices. Chem. Eng. Sci. 50, 3009–3024 (1995)CrossRefGoogle Scholar
  9. Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., Sadowdki, S.A.: Gas-liquid two-phase flow in microchannels. Part I: two-phase flow patterns. Int. J. Multiph. Flows 25, 377–394 (1999a)zbMATHCrossRefGoogle Scholar
  10. Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., LeMouel, A., McCord, B.N.: Gas-liquid two-phase flow in microchannels. Part II: void fraction and pressure drop. Int. J. Multiph. Flows 25, 395–410 (1999b)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Arias
    • 1
    • 2
  • X. Ruiz
    • 3
    • 4
  • J. Casademunt
    • 4
    • 5
  • L. Ramírez-Piscina
    • 2
    • 4
    • 6
  • R. González-Cinca
    • 2
    • 6
  1. 1.Escola Politècnica Superior de CastelldefelsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Space and Aeronautics Research CentreCRAEBarcelonaSpain
  3. 3.Área de Física AplicadaUniversitat Rovira i Virgili TarragonaTarragonaSpain
  4. 4.Institut d’Estudis Espacials de CatalunyaIEECBarcelonaSpain
  5. 5.Departament d’Estructura i Constituents de la Matèria, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain
  6. 6.Departament de Física AplicadaUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations