Microgravity Science and Technology

, Volume 21, Issue 3, pp 217–223

Raman Spectroscopic Analysis of Cupriavidus metallidurans LMG 1195 (CH34) Cultured in Low-shear Microgravity Conditions

  • Joke De Gelder
  • Peter Vandenabeele
  • Patrick De Boever
  • Max Mergeay
  • Luc Moens
  • Paul De Vos
Original Article


In this study, the effect of low-shear microgravity on the metabolism of Cupriavidus metallidurans LMG 1195 was studied with Raman spectroscopy. Therefore, the strain was cultured for 24 or 48 h in a rotating wall vessel to simulate microgravity (SMG) and in a control setup. The differences in Raman spectra recorded from both setups after 24 h of culturing were small. The most prominent features in a difference spectrum, calculated between the mean spectra from the microgravity and the control setup separately, could be assigned to the presence of poly-β-hydroxybutyrate (PHB). SMG seems to yield a higher PHB production after 24 h of culturing. Additional processing of the spectra suggested that SMG induced also other changes in the carbon-metabolism. After 48 h, similar results were found for the carbon metabolism, while PHB concentrations were reduced in SMG compared to the control. However, these differences could also be caused by interfering effects that may occur in the bioreactors after a prolonged incubation time.


Raman spectroscopy Microgravity Bacteria Cupriavidus metallidurans PHB Metabolomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A.J., Dawes, E.A.: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54, 450–472 (1990)Google Scholar
  2. De Boever, P., Ilyin, V.L., Forget-Hanus, D., Van der Auwera, G., Mahillon, J., Mergeay, M.: Conjugation-mediated plasmid exchange between bacteria grown under space flight conditions. Microgravity Sci. Technol. 19, 138–144 (2008)CrossRefGoogle Scholar
  3. De Gelder, J., De Gussem, K., Vandenabeele, P., De Vos, P., Moens, L.: Methods for extracting biochemical information from bacterial Raman spectra: an explorative study on Cupriavidus metallidurans LMG 1195. Anal. Chim. Acta 585, 234–240 (2007a)CrossRefGoogle Scholar
  4. De Gelder, J., De Gussem, K., Vandenabeele, P., Moens, L.: Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1138–1147 (2007b)Google Scholar
  5. De Gelder, J., Scheldeman, P., Leus, K., Heyndrickx, M., Vandenabeele, P., Moens, L., De Vos, P.: Raman spectroscopic study of bacterial endospores. Anal. Bioanal. Chem. 389, 2143–2151 (2007c)CrossRefGoogle Scholar
  6. De Gelder, J., Willemse-Erix, D., Scholtes, M.J., Sanchez, J.I., Maquelin, K., Vandenabeele, P., De Boever, P., Puppels, G.J., Moens, L., De Vos, P.: Monitoring poly-3-hydroxybutyrate production in Cupriavidus necator DSM 428 (H16) with Raman spectroscopy. Anal. Chem. 60, 2155–2160 (2008)CrossRefGoogle Scholar
  7. Demain, A.L., Fang, A.: Secondary metabolism in simulated microgravity. The Chemical Record 1, 333–346 (2001)CrossRefGoogle Scholar
  8. England, L.S., Gorzelak, M., Trevors, J.T.: Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim. Biophys. Acta 1624, 76–81 (2003)Google Scholar
  9. Fulget, N., Poughon, L., Richalet, J., Lasseur, Ch.: MELISSA: global control strategy of the artificial ecosystem by using first principles models of the compartments. Adv. Space Res. 24, 397–405 (1999)CrossRefGoogle Scholar
  10. Goa, H., Ayyaswamy, P.S., Ducheyne, P.: Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Microgravity Sci. Technol. X/3, 154–165 (1997)Google Scholar
  11. Godia, F., Albiol, J., Montesinos, J.L., Pérez, J., Creus, N., Cabello, F., Mengual, X., Montras, A., Lasseur, Ch.: MELISSA: a loop of interconnected bioreactors to develop life support in space. J. Biotechnol. 99, 319–330 (2002)CrossRefGoogle Scholar
  12. Hendrickx, L., De Wever, H., Hermans, V., Mastroleo, F., Morin, N., Wilmotte, A., Janssen, P., Mergeay, M.: Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157, 77–86 (2006)CrossRefGoogle Scholar
  13. Hutsebaut, D., Vandenabeele, P., Moens, L.: Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst. 130, 1204–1214 (2005)CrossRefGoogle Scholar
  14. Hutsebaut, D., Vandroemme, J., Heyrman, J., Dawyndt, P., Vandenabeele, P., Moens, L., De Vos, P.: Raman microspectroscopy as an identification tool within the phylogenetically homogeneous ‘Bacillus subtilis’-group. Syst. Appl. Microbiol. 29, 650–660 (2006)CrossRefGoogle Scholar
  15. Ilyin, V.K.: Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut. 56, 839–850 (2005)CrossRefGoogle Scholar
  16. Janssen, P.H., Liesack, W., Kluge, C., Seeliger, S., Schink, B., Harfoot, C.G.: Sodium-dependent succinate decarboxylation by a new anaerobic bacterium belonging to the genus Peptostreptococcus. Antonie Van Leeuwenhoek 70, 11–20 (1996)CrossRefGoogle Scholar
  17. Klaus, D.M.: Clinostats and bioreactors. Gravit. Space Biol. Bull. 14, 55–64 (2001)Google Scholar
  18. Kiefer, J., Pross, H.D.: Space radiation effects and microgravity. Mutat. Res. Fundam. Mol. Mech. Mutagen. 430, 299–305 (1999)CrossRefGoogle Scholar
  19. Kirschner, C., Maquelin, K., Pina, P., Thi, N.A.N., Choo-Smith, L.P., Sockalingum, G.D., Sandt, C., Ami, D., Orsini, F., Doglia, S.M., Allouch, P., Mainfait, M., Puppels, G.J., Naumann, D.: Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J. Clin. Microbiol. 39, 1763–1770 (2001)CrossRefGoogle Scholar
  20. Lam, K.S., Mamber, S.W., Pack, E.J., Forenza, S., Fernandes, P.B., Klaus, D.M.: The effects of space flight on the production of monorden by Humicola fuscatra WC5157 in solid-state fermentation. Appl. Microbiol. Technol. 49, 579–583 (1998)CrossRefGoogle Scholar
  21. Leys, N.M.E.J., Hendrickx, L., De Boever, P., Baatout, S., Mergeay, M.: Space flight effects on bacterial physiology. J. Biol. Regul. Homeost. Agents 18, 193–199 (2004)Google Scholar
  22. Lui, T.Q., Li, X.Q., Sun, X.Y., Ma, X.H., Cui, Z.F.: Analysis on forces and movement of cultivated particles in a rotating wall vessel bioreactor. Biochem. Eng. J. 18, 97–104 (2004)CrossRefGoogle Scholar
  23. Lynch, S.V., Mukundakrishnan, K., Benoit, M.R., Ayyaswamy, P.S., Matin, A.: Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl. Environ. Microbiol. 72, 7701–7710 (2006)CrossRefGoogle Scholar
  24. Maquelin, K., Dijkshoorn, L., van der Reijden, T.J.K., Puppels, G.J.: Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J. Microbiol. Methods. 64, 126–131 (2006)CrossRefGoogle Scholar
  25. Maquelin, K., Krischner, C., Choo-Smith, L.P., van den braak, N., Endtz, H.P., Naumann, D., Puppels, G.J.: Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods. 51, 255–271 (2002)CrossRefGoogle Scholar
  26. Martens, H., Stark, E.: Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. J. Pharm. Biomed. Anal. 9, 625–635 (1991)CrossRefGoogle Scholar
  27. Mergeay, M.: Editorial. Res. Microbiol. 157, 1–4 (2006)CrossRefGoogle Scholar
  28. Nauman, E.A., Ott, C.M., Sander, E., Tucker, D.L., Pierson, D., Wilson, J.W., Nickerson, C.A.: Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl. Environ. Microbiol. 73, 699–705 (2007)CrossRefGoogle Scholar
  29. Naumann, D., Keller, S., Helm, D., Schultz, C., Schrader, B.: FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J. Mol. Struct. 347, 399–406 (1995)CrossRefGoogle Scholar
  30. Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., LeBlanc, C.L., Bentrup, K.H.Z., Hammond, T., Pierson, D.L.: Low-shear modelled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J. Microbiol. Methods. 54, 1–11 (2003)CrossRefGoogle Scholar
  31. Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., Pierson, D.J.: Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. R. 68, 345–361 (2004)CrossRefGoogle Scholar
  32. Novikova, N., De Boever, P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N., Coninx, I., Mergeay, M.: Survey of environmental biocontamination on board the international space station. Res. Microbiol. 157, 5–12 (2006)CrossRefGoogle Scholar
  33. Oust, A., Moretro, T., Naterstad, K., Sockalingum, G.D., Adt, I., Manfait, M., Kohler, A.: Fourier transform infrared and Raman spectroscopy for characterization of Listeria monocytogenes strains. Appl. Environ. Microb. 72, 228–232 (2006)CrossRefGoogle Scholar
  34. Pross, H.D., Casares, A., Kiefer, J.: Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat. Res. 153, 521–525 (2000)CrossRefGoogle Scholar
  35. Shi, H., Shiraishi, M., Shimizu, K.: Metabolic flux analysis for biosynthesis of poly(beta-hydroxybutyric acid) in Alcaligenes eutrophus from various carbon sources. J. Ferment. Bioeng. 84, 579–587 (1997)CrossRefGoogle Scholar
  36. Tavares, L.Z., da Silva, E.S., Pradella, J.G.D.: Production of pol(3-hydroxybutyrate) in an airlift bioreactor by Ralstonia eutropha. Biochem. Eng. J. 18, 21–31 (2004)CrossRefGoogle Scholar
  37. Thiruvenkatam, R., Scholz, C.: Synthesis of poly(β-hydroxybutyrate) in simulated microgravity: an investigation of aeration profiles in shake flask and bioreactor. J. Polym. Environ. 8, 155–159 (2000)CrossRefGoogle Scholar
  38. Tucker, D.L., Ott, C.M., Huff, S., Fofanov, V., Willson, R.C., Fox, G.E.: Characterization of Escherichia coli MG1655 grown in a low shear modeled microgravity environment. BMC Microbiology 7, Art. No. 15 (2007)Google Scholar
  39. Wilson, J.W., Ott, C.M., Bentrup, K.H., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., McClelland, M., Tsaprailis, G., Radabaugh, T., Hunt, A., Fernandez, D., Richter, E., Shah, M., Kilcoyne, M., Joshi, L., Neiman-Gonzalez, M., Hing, S., Parra, M., Dumars, P., Norwood, K., Bober, R., Devich, J., Ruggles, A., Goulart, C., Rupert, M., Stodieck, L., Stafford, P., Catella, L., Schurr, M.J., Buchanan, K., Morici, L., McCracken, J., Allen, P., Baker-Coleman, C., Hammond, T., Vogel, J., Nelson, R., Pierson, D.L., Stefanyshyn-Piper, H.M., Nickerson, C.A.: Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. U.S.A. 104, 16299–16304 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Joke De Gelder
    • 1
  • Peter Vandenabeele
    • 2
  • Patrick De Boever
    • 3
    • 5
  • Max Mergeay
    • 3
  • Luc Moens
    • 1
  • Paul De Vos
    • 4
  1. 1.Department of Analytical ChemistryGhent UniversityGhentBelgium
  2. 2.Department of Archeology and Ancient History of EuropeGhent UniversityGhentBelgium
  3. 3.Laboratory for Molecular and Cellular BiologyInstitute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)MolBelgium
  4. 4.Laboratory of Microbiology (Lm-Ugent)Ghent UniversityGhentBelgium
  5. 5.Environmental ToxicologyFlemish Institute for Technological ResearchGeelBelgium

Personalised recommendations