Skip to main content
Log in

Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Our objective in this paper is to study a certain class of anisotropic elliptic equations with the second term, which is a low-order term and non-polynomial growth; described by an N-uplet of N-function satisfying the \(\Delta _{2}\)-condition in the framework of anisotropic Orlicz spaces. We prove the existence and uniqueness of entropic solution for a source in the dual or in \(L^{1}\), without assuming any condition on the behaviour of the solutions when x tends towards infinity. Moreover, we are giving an example of an anisotropic elliptic equation that verifies all our demonstrated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberqi, A., Bennouna, J., Hammoumi, M.: Non-uniformly degenerated parabolic equations with L 1-data. AIP Conf. Proc. 2074, 020002 (2019)

    Article  Google Scholar 

  2. Aberqi, A., Bennouna, J., Elmassoudi, M., Hammoumi, M.: Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte für Mathematik 189, 195–219 (2019)

    Article  MathSciNet  Google Scholar 

  3. Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Nonlinear parabolic inequalities with lower order terms. Appl. Anal. 96, 2102–2117 (2017)

    Article  MathSciNet  Google Scholar 

  4. Aharouch, L., Benkirane, A., Rhoudaf, M.: Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 68, 2362–2380 (2008)

    Article  MathSciNet  Google Scholar 

  5. Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 72, 3553–3565 (2010)

    Article  MathSciNet  Google Scholar 

  6. Aharrouch, B., Boukhrij, M., Bennouna, J.: Existence of solutions for a class of degenerate elliptic equations in \(P (x)\)-Sobolev spaces. Topol. Methods Nonlinear Anal. 51, 389–411 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Barletta, G.: On a class of fully anisotropic elliptic equations. Nonlinear Anal. 197, 111838 (2020)

    Article  MathSciNet  Google Scholar 

  8. Bendahmane, M., Karlsen, K.H.: Nonlinear anisotropic elliptic and parabolic equations in R N with advection and lower order terms and locally integrable data. Potential Anal. 22, 207–227 (2005)

    Article  MathSciNet  Google Scholar 

  9. Benslimane, O., Aberqi, A., Bennouna, J.: Existence and Uniqueness of Weak solution of \(p (x)\)-laplacian in Sobolev spaces with variable exponents in complete manifolds, arXiv preprint arXiv:2006.04763, (2020)

  10. Benslimane, O., Aberqi, A., Bennouna, J.: The existence and uniqueness of an entropy solution to unilateral Orlicz anisotropic equations in an unbounded domain. Axioms 9, 109 (2020)

    Article  Google Scholar 

  11. Blanchard, D., Guibé, O., Redwane, H.: Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Commun. Pure Appl. Anal. 15, 197–217 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Blanchard, D., Murat, F., Redwane, H.: Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Differ. Equ. 177, 331–374 (2001)

    Article  MathSciNet  Google Scholar 

  13. Boccardo, L., Gallouët, Th, Vazquez, J.L.: Nonlinear elliptic equations in \(\, \mathbb{R}^{N} \,\) without growth restrictions on the data. J. Differ. Equ. 105, 334–363 (1993)

    Article  Google Scholar 

  14. Boccardo, L., Gallouët, Th: Nonlinear elliptic equations with right hand side measures. Commun. Partial Differ. Equ. 17, 89–258 (1992)

    Article  MathSciNet  Google Scholar 

  15. Bonanno, G., Bisci, G.M., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. Theory Methods Appl. 75, 4441–4456 (2012)

    Article  MathSciNet  Google Scholar 

  16. Bonanno, G., Bisci, G.M., Rădulescu, V.: Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Monatshefte für Mathematik 165, 305–318 (2012)

    Article  MathSciNet  Google Scholar 

  17. Bonanno, G., Bisci, G.M., Rădulescu, V.: Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Comptes Rendus Mathématique 349, 263–268 (2011)

    Article  MathSciNet  Google Scholar 

  18. Bonanno, G., Bisci, G.M., Rădulescu, V.: Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces. Nonlinear Anal. Theory Methods Appl. 74, 4785–4795 (2011)

    Article  MathSciNet  Google Scholar 

  19. Brezis, H.: Semilinear equations in\(\, \mathbb{R}^{ N } \,\)without condition at infinity. Appl. Math. Optim. 12, 271–282 (1984)

    Article  MathSciNet  Google Scholar 

  20. Cammaroto, F., Vilasi, L.: On a perturbed p (x)-Laplacian problem in bounded and unbounded domain. J. Math. Anal. Appl. 402, 71–83 (2013)

    Article  MathSciNet  Google Scholar 

  21. Chmara, M., Maksymiuk, J.: Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations. J. Math. Anal. Appl. 456, 457–475 (2017)

    Article  MathSciNet  Google Scholar 

  22. Chmara, M., Maksymiuk, J.: Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space. J. Math. Anal. Appl. 470, 584–598 (2019)

    Article  MathSciNet  Google Scholar 

  23. Cianchi, A.: A fully anisotropic Sobolev inequality. Pac. J. Math. 196, 283–294 (2000)

    Article  MathSciNet  Google Scholar 

  24. Diaz, J.I., Oleinik, O.A.: Nonlinear elliptic boundary-value problems in unbounded domains and the asymptotic behaviour of its solutions. Comptes Rendus-Academie Des Sciences Paris Serie 1(315), 787–787 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Dong, G., Fang, X.: Existence results for some nonlinear elliptic equations with measure data in Orlicz–Sobolev spaces. Bound. Value Probl. 2015, 18 (2015)

    Article  MathSciNet  Google Scholar 

  26. Elmahi, A.: Sur certains problèmes elliptiques et paraboliques non linéaires dans les espaces d’Orlicz; Ph.D Thesis. Sidi Mohamed Ben Abdelah University: FEZ, Morocco, (1997)

  27. Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    Article  MathSciNet  Google Scholar 

  28. Gushchin, A.K.: The Dirichlet problem for a second-order elliptic equation with an Lp boundary function. Sbornik Math. 203, 1 (2012)

    Article  MathSciNet  Google Scholar 

  29. Korolev, A.G.: Embedding theorems for anisotropic Sobolev–Orlicz spaces, Vestnik Moskovskogo Universiteta Seriya 1 Matematika Mekhanika, pp. 32–37 (1983)

  30. Kozhevnikova, L.M.: On the entropy solution to an elliptic problem in anisotropic Sobolev–Orlicz spaces. Comput. Math. Math. Phys. 57, 434–452 (2017)

    Article  MathSciNet  Google Scholar 

  31. Kozhevnikova, L.M.: Existence of entropic solutions of an elliptic problem in anisotropic Sobolev–Orlicz spaces. J. Math. Sci. 241, 258–284 (2019)

    Article  MathSciNet  Google Scholar 

  32. Krasnosel’skii, M.A., Rutickii, J.B.: Convex Functions and Orlicz Spaces. Fizmatgiz, Moscow (1958)

    Google Scholar 

  33. Laptev, G.I.: Existence of solutions of certain quasilinear elliptic equations in \(\, \mathbb{R}^{ N } \,\) without conditions at infinity. J. Math. Sci. 150, 2384–2394 (2008)

    Article  MathSciNet  Google Scholar 

  34. Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  35. Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)

    Article  MathSciNet  Google Scholar 

  36. Papageorgiou, N.S., Rădulescu, V., Repovš, D.D.: Ground state and nodal solutions for a class of double phase problems. Zeitschrift für angewandte Mathematik und Physik 71, 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  37. Rădulescu, V.D., Repovs, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, vol. 9. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  38. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2019)

    Article  MathSciNet  Google Scholar 

  39. Yang, Sh, Dai, G.: Existence results for a variable exponent elliptic problem via topological method. Bound. Value Probl. 2012, 99 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Benslimane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let

$$\begin{aligned}&A : \mathring{W}_{B}^{1} ( \Omega ) \longrightarrow ( \mathring{W}_{B}^{1} ( \Omega ) )^{'} \\&\quad v \quad \longmapsto < A( u ), \, v > = \int _{\Omega } \sum _{i = 1}^{N} \bigg ( \, a_{i} ( x, u, \nabla u ) \cdot \frac{\partial v}{\partial x_{i}} + b_{i} ( x, u, \nabla u ) \cdot v \,\bigg ) \,\, dx \\&\quad -\, \int _{\Omega } f( x )\cdot v \,\, dx \end{aligned}$$

and let denote \(L_{\bar{B}} ( \Omega ) = \displaystyle \prod _{k=1}^{N} L_{\bar{B}_{i}} ( \Omega )\) with the norm

$$\begin{aligned} ||\, v\,||_{L_{\bar{B}} ( \Omega )} = \sum _{i = 1}^{N} ||\, v_{i} \,||_{\bar{B}_{i}, \Omega } \quad v = ( v_{1}, \ldots , v_{N} ) \in L_{\bar{B}} ( \Omega ). \end{aligned}$$

Where \(\bar{B_{i}} ( t )\) are N-functions satisfying the \(\Delta _{2}-\)conditions. Sobolev-space \(\mathring{W}_{B}^{1} ( \Omega )\) is the completions of the space \(C_{0}^{\infty } ( \Omega )\).

$$\begin{aligned} a( x, s, \xi ) = \big ( \, a_{1} ( x, s, \xi ), \ldots , a_{N} ( x, s, \xi ) \, \big ) \end{aligned}$$

and

$$\begin{aligned} b( x, s, \xi ) = \big ( \, b_{1} ( x, s, \xi ), \ldots , b_{N} ( x, s, \xi ) \, \big ). \end{aligned}$$

Let’s show that operator A is bounded, so for \(u \in \mathring{W}_{B}^{1} ( \Omega )\), according to (9) and (20) we get

$$\begin{aligned} || \,a( x, u, \nabla u ) \,||_{L_{\bar{B}} ( \Omega )}&= \sum _{i = 1}^{N} ||\, a_{i} ( x, u, \nabla u ) \, ||_{L_{\bar{B}_{i}} ( \Omega )} \nonumber \\&\le \sum _{i = 1}^{N} \int _{\Omega } \bar{B}_{i} ( \, a_{i} ( x, u, \nabla u )\, ) \,\, dx + N \nonumber \\ &\le \tilde{a} ( \Omega ) \cdot || \, B( u ) \, ||_{1, \Omega } + ||\, \varphi ||_{1, \Omega } + N. \end{aligned}$$
(44)

Further, for \(a( x, u, \nabla u ) \in L_{\bar{B}_{i}} ( \Omega ), \,\,\, v \in \mathring{W}_{B}^{1} ( \Omega )\) using Hölder’s inequality we have

$$\begin{aligned} |\,< A( u ), \, v >_{\Omega } \, |&\le \,2 \, || \, a( x, u, \nabla u ) \, ||_{L_{\bar{B}} ( \Omega )} \cdot ||\, v \,||_{\mathring{W}_{B}^{1} ( \Omega )} \nonumber \\&\quad +\, 2 \, ||\, b( x, u, \nabla u ) \,||_{L_{B} ( \Omega )} \cdot ||\, v\,||_{\mathring{W}_{B}^{1} ( \Omega )} + c_{0} \cdot ||\, v\,||_{\mathring{W}_{B}^{1} ( \Omega )}. \end{aligned}$$
(45)

Thus, A is bounded. And that A is coercive, so for \(u \in \mathring{W}_{B}^{1} ( \Omega )\)

$$\begin{aligned} < A( u ), u >_{\Omega }&= \sum _{i = 1}^{N} \int _{\Omega } a_{i} ( x, u, \nabla u ) \cdot \frac{\partial u}{\partial x_{i}} \,\, dx \,+ \, \sum _{i = 1}^{N} \int _{\Omega } b_{i} ( x, u, \nabla u ) \cdot u \,\, dx\\&\quad -\, \int _{\Omega } f( x ) \cdot u \,\, dx. \end{aligned}$$

Then,

$$\begin{aligned} \frac{< A( u ), \, u >_{\Omega }}{||\, u\,||_{\mathring{W}_{B}^{1} ( \Omega )}}&\ge \frac{1}{||\, u\,||_{\mathring{W}_{B}^{1} ( \Omega )}} \cdot \bigg [ \, \bar{a} \, \sum _{i = 1}^{N} \int _{\Omega } B_{i} \bigg ( \,\bigg |\, \frac{\partial u}{\partial x_{i}} \,\bigg |\, \bigg ) \,\, dx - c_{1} - c_{0} \\&\qquad -\, l( u ) \cdot \sum _{i = 1}^{N} \int _{\Omega } B_{i} \bigg ( \,\bigg |\, \frac{\partial u}{\partial x_{i}} \,\bigg |\, \bigg ) \,\, dx - \int _{\Omega } h( x )\,\, dx \, \bigg ] \\&\quad \ge \frac{1}{||\, u\,||_{\mathring{W}_{B}^{1} ( \Omega )}} \cdot \bigg [ \, ( \, \bar{a} ( \Omega ) - c_{2} \,) \cdot \sum _{i = 1}^{N} \int _{\Omega } B_{i} \bigg ( \,\bigg |\, \frac{\partial u}{\partial x_{i}} \,\bigg |\, \bigg ) \,\, dx - c_{0} - c_{1}- c_{3} \, \bigg ] \\ \end{aligned}$$

According to (20), we have for all \(k> 0, \,\, \exists \, \alpha _{0} > 0\) such that

$$\begin{aligned} b_{i} ( \, |\, u_{x_{i}} \,| \, ) > k \, b_{i} \bigg ( \, \frac{|\, u_{x_{i}} \, |}{||\, u_{x_{i}}\,||_{B_{i}, \Omega }} \, \bigg ) , \quad i = 1, \ldots , N. \end{aligned}$$

We take \(||\, u_{x_{i}} \,||_{B_{i}, \Omega } > \alpha _{0} \quad i = 1, \ldots , N.\)

Suppose that \(||\, u_{x_{i}} \, ||_{\mathring{W}_{B}^{1} ( \Omega )} \longrightarrow 0\) as \(j \rightarrow \infty\). We can assume that

$$\begin{aligned} || \, u^{j}_{x_{1}} \, ||_{B_{1}, \Omega } + \cdots + || \, u^{j}_{x_{N}}||_{B_{N}, \Omega } \ge N \, \alpha _{0}. \end{aligned}$$

According to (9) for \(c > 1,\) we have

$$\begin{aligned} |\, u^{j}\,| \, b( \, |\, u^{j}\,|\,) < c \, B( u^{j} ) \end{aligned}$$

then, by (2.8) we obtain

$$\begin{aligned} \frac{< A( u^{j} ), \, u^{j} >_{\Omega }}{||\, u^{j}\,||_{\mathring{W}_{B}^{1} ( \Omega )}}&\ge \frac{\bar{a} ( \Omega ) - c_{2}}{N \, \alpha _{0}} \cdot \sum _{i = 1}^{N} \int _{\Omega } B_{i} \bigg ( \,\bigg |\, \frac{\partial u}{\partial x_{i}} \,\bigg |\, \bigg ) \,\, dx - \frac{c_{4}}{N \, \alpha _{0}} \\&\ge \frac{\bar{a} ( \Omega ) - c_{2}}{N \, \alpha _{0}} \cdot \sum _{i = 1}^{N} \int _{\Omega } |\, u^{j}_{x_{i}}\,| \, b( \, |\, u^{j}_{x_{i}}\,|\,) \,\, dx - \frac{c_{4}}{N \, \alpha _{0}} \\&\ge \frac{( \,\bar{a} ( \Omega ) - c_{2} \, ) \cdot k}{c\, N \, ||\, u^{j}_{x_{i}} \, ||_{B_{i}}} \cdot \sum _{i = 1}^{N} \int _{\Omega } |\, u^{j}_{x_{i}}\,| \, b_{i} \bigg ( \, \frac{|\, u^{j}_{x_{i}} \, |}{||\, u^{j}_{x_{i}}\,||_{B_{i}, \Omega }} \, \bigg ) \,\, dx - \frac{c_{4}}{N \, \alpha _{0}} \\ &\ge \frac{( \,\bar{a} ( \Omega ) - c_{2} \, ) \cdot k}{c\, N} \cdot \sum _{i = 1}^{N} \int _{\Omega } B_{i} \bigg ( \, \frac{ |\, u^{j}_{x_{i}}\,|}{||\, u^{j}_{x_{i}}\,||_{B_{i}, \Omega }} \, \bigg ) \,\, dx - \frac{c_{4}}{N \, \alpha _{0}} \\&\ge \frac{( \,\bar{a} ( \Omega ) - c_{2} \, ) \cdot k}{c\, N} - \frac{c_{4}}{N \, \alpha _{0}}. \end{aligned}$$

which shows that A is coercive, because k is arbitrary.

And for A pseudo-monotonic, we consider a sequence \(\{\, u^{m}\,\}_{m = 1}^{\infty }\) in the space \(\mathring{W}_{B}^{1} ( \Omega )\) such that

$$\begin{aligned} u^{m} \rightharpoonup u \,\, \text{ weakly } \text{ in } \,\, \mathring{W}_{B}^{1} ( \Omega ) \quad m \rightarrow \infty . \end{aligned}$$
(46)
$$\begin{aligned} \lim _{m \rightarrow \infty } \sup \,< \, A( u^{m} ), \, u^{m} - u \, > \le 0 \end{aligned}$$
(47)

we demonstrate that

$$\begin{aligned}&A( u^{m} ) \rightharpoonup A( u ) \,\, \text{ weakly } \text{ in } \,\, ( \, \mathring{W}_{B}^{1} ( \Omega )\, )^{'}, \,\, m \rightarrow \infty . \end{aligned}$$
(48)
$$\begin{aligned}&< \, A( u^{m} ), \, u^{m} - u \,> \longrightarrow 0, \,\, m \rightarrow \infty . \end{aligned}$$
(49)

Since \(B( \theta )\) satisfy the \(\Delta _{2}\)-condition, then by (9) we have

$$\begin{aligned} \int _{\Omega } B( \theta ) \,\, dx \le c_{0} \, ||\, \theta \,||_{B, \, \Omega }. \end{aligned}$$
(50)

According to (46) we get

$$\begin{aligned} ||\, u^{m} \,||_{\mathring{W}_{B}^{1} ( \Omega )} \le c_{1} \quad m = 1, 2, \ldots \end{aligned}$$
(51)

and

$$\begin{aligned} ||\, B( \nabla u^{m} ) \,||_{1} \le c_{2} \quad m = 1, 2, \ldots . \end{aligned}$$
(52)

Combining to (44) and (51) we obtain

$$\begin{aligned} ||\, a^{m}( x, u, \nabla u )\,||_{\bar{B}} = \sum _{i = 1}^{N} ||\, a_{i}^{m} ( x, u^{m}, \nabla u^{m} ) \,||_{\bar{B}_{i}} \le c_{3} \,\, m = 1,2, \ldots . \end{aligned}$$
(53)

And for \(m \in \mathbb {N}^{*}, \,\, |\, b^{m} ( x, u, \nabla ) \,| = |\, T_{m} ( b( x, u, \nabla u )\,| \le m.\) Then, by (23) and (51) we have

$$\begin{aligned}&||\, b^{m} ( x, u, \nabla u )\,||_{B} = \sum _{i = 1}^{N} ||\, b_{i}^{m} ( x, u^{m}, \nabla u^{m} )\,||_{B_{i}} \le c_{4} \,\, m = 1,2, \ldots . \end{aligned}$$

According again to proof of Lemmas 3.4 and 2.8, we have

$$\begin{aligned}&\mathring{W}_{B}^{1} ( \Omega ( R + 1 ) ) \hookrightarrow L_{B_{i}} ( \Omega ( R + 1 ) ) \,\, \text{ for } \,\, R > 0 \,\, \text{ and } \,\, i = 1, \ldots , N. \end{aligned}$$

We set

$$\begin{aligned} A^{m} ( x )&= \sum _{i = 1}^{N} \big [ \, a^{m}_{i} ( x, u^{m}, \nabla u^{m} ) - a^{m}_{i} ( x, u, \nabla u ) \, \big ] \, ( u^{m} - u )_{x_{i}} \\&\quad +\, \sum _{i = 1}^{N} \big [ \, b^{m}_{i} ( x, u^{m}, \nabla u^{m} ) - b^{m}_{i} ( x, u, \nabla u ) \, \big ] \, ( u^{m} - u ), \,\, m = 1, \ldots . \end{aligned}$$

then

$$\begin{aligned} < \, A( u^{m} ) - A( u ), \, u^{m} - u \, > = \int _{\Omega } A^{m} ( x ) \,\, dx \quad m = 1, \ldots . \end{aligned}$$

By (46) and (47), we obtain

$$\begin{aligned} \lim _{m \rightarrow \infty } \sup \, \int _{\Omega } A^{m} ( x ) \,\, dx \le 0. \end{aligned}$$

So,

$$\begin{aligned} A^{m} ( x )&= \sum _{i = 1}^{N} \big [ \, a^{m}_{i} ( x, u^{m}, \nabla u^{m} ) - a^{m}_{i} ( x, u^{m}, \nabla u ) \, \big ] \, ( u^{m} - u )_{x_{i}} \nonumber \\&\quad +\, \sum _{i = 1}^{N} \big [ \, a^{m}_{i} ( x, u^{m}, \nabla u ) - a^{m}_{i} ( x, u, \nabla u ) \, \big ] \, ( u^{m} - u )_{x_{i}} \nonumber \\&\quad +\, \sum _{i = 1}^{N} \big [ \, b^{m}_{i} ( x, u^{m}, \nabla u^{m} ) - b^{m}_{i} ( x, u, \nabla u ) \, \big ] \, ( u^{m} - u ) \nonumber \\&= A^{m}_{1} ( x ) + A_{2}^{m} ( x ) + A_{3}^{m} ( x ) \quad m = 1, \ldots . \end{aligned}$$
(54)

We prove that

$$\begin{aligned} A_{1}^{m} ( x ) \longrightarrow 0 \,\, \text{ almost } \text{ everywhere } \text{ in } \,\, \Omega \quad m \rightarrow \infty . \end{aligned}$$
(55)
$$\begin{aligned} A_{2}^{m} ( x ) \longrightarrow 0 \,\, \text{ almost } \text{ everywhere } \text{ in } \,\, \Omega \quad m \rightarrow \infty . \end{aligned}$$
(56)
$$\begin{aligned} A_{3}^{m} ( x ) \longrightarrow 0 \,\, \text{ almost } \text{ everywhere } \text{ in } \,\, \Omega \quad m \rightarrow \infty . \end{aligned}$$
(57)
$$\begin{aligned} A^{m} ( x )&= \sum _{i = 1}^{N} \big [ \, a^{m}_{i} ( x, u^{m}, \nabla u^{m} ) - a^{m}_{i} ( x, u^{m}, \nabla u ) \, \big ] \, ( u^{m} - u )_{x_{i}} \\&= \sum _{i = 1}^{N} a_{i}^{m} ( x, u^{m}, \nabla u^{m} )\cdot u_{x_{i}}^{m} - \sum _{i = 1}^{N} a_{i}^{m} ( x, u^{m}, \nabla u^{m} ) \cdot u_{x_{i}} \\&\quad -\, \sum _{i = 1}^{N} a_{i}^{m} ( x, u, \nabla u ) \cdot u^{m}_{x_{i}} + \sum _{i = 1}^{N} a_{i}^{m} ( x, u, \nabla u ) \cdot u_{x_{i}} \end{aligned}$$

applying (1), (22), (52) and (53) we obtain

$$\begin{aligned} A^{m}_{1} ( x ) \ge c( m ) \longrightarrow 0 \,\, \text{ as } \,\, m \rightarrow \infty . \end{aligned}$$

Hence, using the diagonal process, we conclude the convergence (55).

As in [32], let \(A_{i} ( u ) = a_{i} ( x, u, \nabla v ) \,\, i = 1, \ldots , N\) be Nemytsky operators for \(v \in \mathring{W}_{B}^{1} ( \Omega )\) fixed and \(x \in \Omega ( R ),\) continuous in \(L_{\bar{B}_{i}} ( \Omega ( R ) )\) for any \(R > 0.\)

Thus, according to (10), (27) and the diagonal process, we have for any \(R > 0\)

$$\begin{aligned} A_{2}^{m} ( x ) \longrightarrow 0 \,\, \text{ almost } \text{ everywhere } \text{ in } \,\, \Omega \quad m \rightarrow \infty . \end{aligned}$$

Applying the inequality (10) we obtain

$$\begin{aligned} A_{3}^{m} ( x )&\le 2 \, \sum _{i = 1}^{N} ||\, b_{i}^{m} ( x, u^{m}, \nabla u^{m} ) - b_{i}^{m} ( x, u, \nabla u ) \,||_{B_{i}, \Omega ( R )} \cdot ||\, u^{m} - u \,||_{\mathring{W}_{B}^{1} ( \Omega )} \\ &\le 2 c( m ) \cdot ||\, u^{m} - u \,||_{\mathring{W}_{B}^{1} ( \Omega )}. \end{aligned}$$

Hence, combining to (27) and the diagonal process, we have for any \(R > 0\)

$$\begin{aligned} A_{3}^{m} ( x ) \longrightarrow 0 \,\, \text{ almost } \text{ everywhere } \text{ in } \,\, \Omega \quad m \rightarrow \infty . \end{aligned}$$

Consequently, by (55), (56), (57) and the selective convergences we deduce that

$$\begin{aligned} A^{m} ( x ) \longrightarrow 0 \,\, \text{ almost } \text{ everywhere } \text{ in } \,\, \Omega \quad m \rightarrow \infty . \end{aligned}$$
(58)

Let \(\Omega ' \subset \Omega , \, \text{ meas }\, \Omega ' = \text{ meas } \,\Omega\), and the conditions (27), (58) are true, and (20)–(23) are satisfied.

We prove the convergence

$$\begin{aligned} u^{m}_{x_{i}} ( x ) \, \longrightarrow \, u_{x_{i}} ( x ) \,\, \text{ everywhere } \text{ in } \,\, \Omega \,\,\text{ for }\,\, i = 1, \ldots , N \,\, , \,\, m \rightarrow \infty \end{aligned}$$
(59)

By the absurd, suppose we do not have convergence at the point \(x ^ {*} \in \Omega '\).

Let \(u^{m} \, = u^{m}_{x_{i}} ( x^{*} ) , \, u = u_{x_{i}} ( x^{*} ) , \,\, i = 1, \ldots , N,\) and \(\hat{a} = \varphi _{1} ( x^{*} ) ,\,\, \bar{a} = \varphi ( x^{*} ) .\)

Suppose that the sequence \(\,\displaystyle \sum _ {i = 1} ^ {N} B_ {i} (u^{m}) \, \, m = 1, \ldots , \infty\) is unbounded.

Let \(\epsilon \in \bigg ( 0 , \frac{\bar{a}}{1 + \hat{a}} \bigg )\) is fixed, according to (2), (4) and the conditions (20), (22), we get

$$\begin{aligned} A^{m} ( x^{*} )&= \sum _{i = 1}^{N} \bigg ( a_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) - a_{i}^{m} ( x^{*}, u, \nabla u ) \bigg ) \, \nabla ( u^{m} - u )\\&\quad +\, \sum _{i = 1}^{N} \bigg ( b_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) - b_{i}^{m} ( x^{*}, u , \nabla u ) \bigg ) \, ( u^{m} - u ) \\&= \sum _{i = 1}^{N} a_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) \, \nabla u^{m} - \sum _{i = 1}^{N} a_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) \, \nabla u \\&\quad -\,\sum _{i = 1}^{N} a_{i}^{m} ( x^{*}, u , \nabla u ) \, \nabla u^{m} + \, \sum _{i = 1}^{N} a_{i}^{m} ( x^{*}, u, \nabla u ) \, \nabla u \\&\quad + \, \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) \, u^{j} \, - \, \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) \, u \\&\quad - \, \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u , \nabla u ) \, u^{m} \, + \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u , \nabla u ) \, u. \end{aligned}$$

Applying the generalized Young inequality and (51), we obtain

$$\begin{aligned} A^{m} ( x^{*} )&\ge \sum _{i = 1}^{N} a_{i}^{m} ( x^{*}, u , \nabla u ) \cdot \nabla u \, + \, \sum _{i = 1}^{N} a_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) \cdot \nabla u^{m} \\&\qquad - \, \epsilon \, \sum _{i = 1}^{N} \bar{B}_{i} ( a_{i}^{m} ( x^{*}, u^{m}, \nabla u^{m} ) ) \\&\qquad - \,c_{1} ( \epsilon ) \,\sum _{i = 1}^{N} B_{i} ( \nabla u ) - \, \epsilon \, \sum _{i = 1}^{N} \bar{B}_{i} ( a_{i}^{m} ( x^{*}, u, \nabla u ) ) - \, c_{2} ( \epsilon ) \, \sum _{i = 1}^{N} B_{i} ( \nabla u^{m} ) \\&\qquad +\, \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) \cdot \nabla u^{m} + \, \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u , \nabla u ) \cdot \nabla u \\&\qquad - \, \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u^{m} , \nabla u^{m} ) \cdot \nabla u \\&\qquad - \, \sum _{i = 1}^{N} b_{i}^{m} ( x^{*}, u , \nabla u ) \cdot \nabla u^{m}\\&\quad \ge \, \bar{a} \, \sum _{i = 1}^{N} B_{i} ( \nabla u ) \, - \, \psi ( x^{*} ) \, + \, \sum _{i = 1}^{N} B_{i} ( \nabla u^{m} ) \, - \, \psi ( x^{*} )\, \\&\qquad - \, \epsilon \, \hat{a} \, \sum _{i = 1}^{N} B_{i} ( \nabla u^{m} ) - \, \epsilon \, \varphi ( x^{*} ) \\&\qquad - \, c_{1} ( \epsilon ) \, \sum _{i = 1}^{N} B_{i} ( \nabla u ) - \, \epsilon \, \hat{a} \, \sum _{i = 1}^{N} B_{i} ( \nabla u ) \, - \, \epsilon \, \varphi ( x^{*} ) \\&\qquad - \, c_{2} \, \sum _{i = 1}^{N} B_{i} ( \nabla u^{m} ) \, - \, 4 h( x^{*} ) \\&\qquad - \, c_{3} \, l( u ) \, \sum _{i = 1} ^{N} B_{i} ( \nabla u ) - c_{4} \, l( u^{m} ) \, \sum _{i = 1}^{N} B_{i} ( \nabla u^{m} ). \end{aligned}$$

So

$$\begin{aligned} A^{j} ( x^{*} )&\ge \big [ \bar{a} \, - \, c_{1} ( \epsilon ) \, - \, \epsilon \, \hat{a} \, \\&\quad - \, c_{3}\, l( u ) \, \big ] \, \sum _{i = 1}^{N} B_{i} ( \nabla u ) + \, \big [ \bar{a} \, - \, \epsilon \, \hat{a} \, c_{2} \, \\&\quad - \, c_{4}\, l( u^{m} ) \, \big ] \, \sum _{i = 1}^{N} B_{i} ( \nabla u^{m} ) \, - \, c_{5} ( \epsilon ). \end{aligned}$$

So we deduce that the sequence \(A^{m} (x^{*}) \,\) is not bounded, which is absurd as far as what is in (58).

As a consequence, the sequences \(\, u^{m} _{x_{i}} , \, i = 1, \ldots , N, \,\, m \rightarrow \infty\) are bounded.

Let \(u^{*} = (u^{*}_{1}, u^{*}_{2}, \ldots , u^{*}_{N}) \, \,\) the limits of subsequence \(u^{m} = ( u^{m}_{1}, \ldots , u^{m}_{N}) \, \,\) with \(m \, \rightarrow \, \infty .\) Then, taking into account (27), we obtain

$$\begin{aligned} u^{m}_{x_{i}} \, \longrightarrow \, u^{*}_{x_{i}} \quad , \,\,\, i = 1, \ldots , N . \end{aligned}$$
(60)

As a result, from (58), (60) and the fact that \(a_{i}^{m} (x^{*} , u, \nabla u)\) are continuous in u (because they are Carathéodory functions), we have

$$\begin{aligned} \sum _{i = 1}^{N}\big ( a_{i}^{m} ( x^{*} , u^{m}, \nabla u^{m} ) - a_{i}^{m} ( x^{*}, u , \nabla u ) \big ) \cdot ( u^{m}_{x_{i}} - u_{x_{i}} ) = 0 , \end{aligned}$$

and from (21) we have, \(u^{*}_{x_{i}} = u_{x_{i}}.\) This contradicts the fact that there is no convergence at the point \(x^{*}.\)

And referring to (27), (60) and the fact that \(\, a_{i}^{m} ( x^{*}, u , \nabla u ) \,\) are continuous u, so for \(m \rightarrow \infty\) we get

$$\begin{aligned} a_{i}^{m} ( x, u^{m}, \nabla u^{m} )\, \longrightarrow \, a_{i}^{m} ( x, u , \nabla u ) , \,\, i = 1, \ldots , N \,\, \text{ almost } \text{ everywhere } \text{ in } \,\, \Omega . \end{aligned}$$

Using Lemma 3.5 we find the weak convergences

$$\begin{aligned} a_{i}^{m} ( x, u^{m}, \nabla u^{m} ) \rightharpoonup a_{i}^{m} ( x, u , \nabla u ) \,\, \text{ in } \,\, L_{\bar{B}_{i} ( \Omega )},\, i = 1, \ldots , N. \end{aligned}$$
(61)

The weak convergence (48) follows from (61).

Furthermore,to complete the proof, we note that (49) is implied from (46) and (58):

$$\begin{aligned}< A( u^{m} ), u^{m} - u>\,= & lt; A( u^{m} ) - A( u ), u^{m} - u>\\&\quad +\, < A( u ), u^{m} - u > \,\rightarrow 0, \, m \rightarrow \infty . \end{aligned}$$

We’re ending this section by a suitable example, that checks all the above conditions and propositions,

Example 5.1

Let \(\Omega\) be an unbounded domain of \(\mathbb {R}^{N}, \, ( N \ge 2 )\). By Theorems 3.1 and 4.1 it exists a unique entropy solution based on the Definition 1.1 of the following anisotropic problem \(( \mathcal {P}_{1} )\):

$$\begin{aligned} ( \mathcal {P}_{1} ) {\left\{ \begin{array}{ll} \, \tilde{a} \, \displaystyle \sum _{i = 1}^{N} \bar{B}_{i}^{-1} B_{i} ( |\, \nabla u \,| ) + l( u ) \cdot \sum _{i = 1}^{N} B_{i} ( |\, \nabla u \, | ) = f( x ) &\quad \text {in} \,\,\Omega , \\ \, u = 0 &\quad \text {on} \, \partial \Omega . \end{array}\right. } \end{aligned}$$

with \(\tilde{a}\) is a positive constant, \(l : \mathbb {R} \longrightarrow \mathbb {R}^{+}\) a positive continuous functions such as \(l \in L^{1} ( \mathbb {R} ) \cap L^{\infty } ( \mathbb {R} ),\) \(f \in L^{1} ( \Omega )\) and

$$\begin{aligned} B( z ) \, = \, | \, z \, |^{b} \, ( \, | \, ln | z | \, | \, + \, 1 \, ), \, \, b \, > \, 1 \end{aligned}$$

satisfying the \(\Delta _{2}\)-condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benslimane, O., Aberqi, A. & Bennouna, J. Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space. Rend. Circ. Mat. Palermo, II. Ser 70, 1579–1608 (2021). https://doi.org/10.1007/s12215-020-00577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00577-4

Keywords

Mathematics Subject Classification

Navigation