Advertisement

Young measure theory for unsteady problems in Orlicz–Sobolev spaces

  • Elhoussine Azroul
  • Farah BalaadichEmail author
Article
  • 2 Downloads

Abstract

In this paper, we study the solvability of the initial-boundary value problem for quasilinear parabolic system in divergence form with nonstandard growth conditions related to N-functions. By means of the theory of Young measure we prove the existence of weak solutions.

Keywords

Quasilinear parabolic systems Orlicz spaces Weak solutions Young measures 

Mathematics Subject Classification

35K59 35Q30 46E30 

Notes

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier, Amsterdam (2003)Google Scholar
  2. 2.
    Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. De Gruyter, Berlin (1990)CrossRefGoogle Scholar
  3. 3.
    Azroul, E., Balaadich, F.: Existence and uniqueness results for Quasilinear parabolic systems in Orlicz spaces. J. Dyn. Control Syst (2019).  https://doi.org/10.1007/s10883-019-09447-4
  4. 4.
    Azroul, E., Balaadich, F.: Existence of weak solutions for quasilinear elliptic systems in Orlicz spaces. Appl. Anal. (2019).  https://doi.org/10.1080/00036811.2019.1680829
  5. 5.
    Azroul, E., Balaadich, F.: Quasilinear elliptic systems with nonstandard growth and weak monotonicity. Ricerche Mat. (2019).  https://doi.org/10.1007/s11587-019-00447-x CrossRefGoogle Scholar
  6. 6.
    Ball, J.M.: A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transitions (Nice 1988). Lecture Notes in Phys, vol. 344, 207–215 (1989)Google Scholar
  7. 7.
    Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic systems with p, q-growth: a variational approach. Arch. Ration. Mech. Anal. 210, 219–267 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic equations with p, q-growth. J. Math. Pures Appl. 100, 535–563 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brézis, H.: Opérateurs maximaux monotone et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1973)Google Scholar
  10. 10.
    Demoulini, S.: Young measure solutions for a nonlinear parabolic equation of forward–backward type. SIAM J. Math. Anal. 27(2), 376–403 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Diening, L., Nägele, P., Ru̇z̆ic̆ka, R.: Monotone operator theory for unsteady problems in variable exponent spaces. Complex Var. Ellip. Equ. 57(11), 1209–1231 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Elmahi, A., Meskine, D.: Parabolic equations in Orlicz spaces. J. Lond. Math. Soc. 72, 410–428 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Evans, L.C.: Weak convergence methods for nonlinear partial differential equations, no. 74 (1990)Google Scholar
  14. 14.
    Hungerühler, N.: A refinement of Ball’s theorem on Young measures. N.Y. J. Math. 3, 48–53 (1997)MathSciNetGoogle Scholar
  15. 15.
    Hungerbühler, N.: Quasilinear parabolic systems in divergence form with weak monotonicity. Duke Math. J. 107, 497–519 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gwiazda, P.: Swierczewska–Gwiazda, Parabolic equations in anisotropic Orlicz spaces with general N-functions. Progr. Nonlinear Differ. Equ. Appl. 80, 301–311 (2011)zbMATHGoogle Scholar
  17. 17.
    Krasnosel’skii, M., Rutickii, Y.: Convex Functions and Orlicz Spaces. P. Noordhoff, Groningen (1969)Google Scholar
  18. 18.
    Kufner, A., John, O., Fucík, S.: Function Spaces. Academia, Prague (1977)zbMATHGoogle Scholar
  19. 19.
    Landes, R.: On the existence of weak solutions for quasilinear parabolic initial–boundary value problems. Proc. R. Soc. Edinb. Sect. A 89, 217–237 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Gauthier-Villars, Paris (1969)zbMATHGoogle Scholar
  21. 21.
    Marcellini, P.: A variational approach to parabolic equations under general and p, q-growth conditions. Nonlinear Anal. (2019).  https://doi.org/10.1016/j.na.2019.02.010
  22. 22.
    Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mustonen, V., Tienari, M.: On monotone-like mappings in Orlicz–Sobolev spaces. Math. Bohem. 124, 255–271 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Visik, M.L.: On general boundary problems for elliptic differential equations. Amer. Math. Soc. Transl. 24(2), 107–172 (1963)Google Scholar
  25. 25.
    Yang, M., Fu, Y.: Existence of weak solutions for quasilinear parabolic systems in divergence form with variable growth. Electron. J. Differ. Equ. 2018(113), 1–19 (2018)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Youssfi, A., Azroul, E., Lahmi, B.: Nonlinear parabolic equations with nonstandard growth. Appl. Anal.  https://doi.org/10.1080/00036811.2015.1111999 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsFaculty of Sciences Dhar El MehrazFezMorocco

Personalised recommendations