Advertisement

Extending the applicability of high-order iterative schemes under Kantorovich hypotheses and restricted convergence regions

  • Ioannis K. Argyros
  • Santhosh George
  • Shobha M. ErappaEmail author
Article
  • 5 Downloads

Abstract

We use restricted convergence regions to locate a more precise set than in earlier works containing the iterates of some high-order iterative schemes involving Banach space valued operators. This way the Lipschitz conditions involve tighter constants than before leading to weaker sufficient semilocal convergence criteria, tighter bounds on the error distances and an at least as precise information on the location of the solution. These improvements are obtained under the same computational effort since computing the old Lipschitz constants also requires the computation of the new constants as special cases. The same technique can be used to extend the applicability of other iterative schemes. Numerical examples further validate the new results.

Keywords

Banach space High convergence order schemes Semi-local convergence 

Mathematics Subject Classification

65J20 49M15 74G20 41A25 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Amat, S., Bermudez, C., Busquier, S., Legaz, M.J., Plaza, S.: On a family of high-order iterative method under Kantorovich conditions and some Applications, Abstract and Applied Analysis, vol. 2012, Article Id 782170,  https://doi.org/10.1155/2012/782170 (2012)
  2. 2.
    Amat, S., Busquier, S.: Third order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336(1), 243–261 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Amat, S., Busquier, S., Gutirrez, J.M.: An adaptive version of a fourth-order iterative method for quadratic equations. J. Comput. Appl. Math. 191(2), 259–268 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007)Google Scholar
  5. 5.
    Argyros, I.K.: Improving the order and rates of convergence for the super-Halley method in Banach spaces. Korean J. Comput. Appl. Math. 5(2), 465–474 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Argyros, I.K.: The convergence of a Halley–Chebysheff-type method under Newton–Kantorovich hypotheses. Appl. Math. Lett. 6(5), 71–74 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Argyros, I.K., Magréñan, A.A.: Iterative Methods and Their Dynamics with Applications. CRC Press, New York (2017)CrossRefGoogle Scholar
  8. 8.
    Argyros, I.K., George, S., Alberto Magréñan, A.: Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Argyros, I.K., George, S., Thapa, N.: Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications. Volume I, ISBN:978-1-53613-361-5, Nova Science Publishers (2018)Google Scholar
  10. 10.
    Argyros, I.K., George, S., Thapa, N.: Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications, Mathematics Research Developments series, Volume II, ISBN: 978-1-53613-309-7, Nova Science Publishers (2018)Google Scholar
  11. 11.
    Ezquerro, J.A., Grau-Sanchez, M., Grau, A., Hernandez, M.A., Noguera, M., Romero, N.: On iterative methods with accelerated convergence for solving systems of non-linear equations. J. Optim. Theory Appl. 151(1), 163–174 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ezquerro, J.A., Hernandez, M.A.: New Kantorovich-type conditions for Halley’s method. Appl. Numer. Anal. Comput. Math. 2(1), 70–77 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hernandez, M.A., Salanova, M.A.: Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. J. Comput. Appl. Math. 126(1–2), 131–143 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Magréñan, A.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–225 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Magréñan, A.A., Argyros, I.K.: Improved convergence analysis for Newton-like methods. Numer. Algor. 71(4), 811–826 (2016).  https://doi.org/10.1007/s11075-015-0025-3 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Romero, N.: Familias parametricas de procesos iterativos de alto orden de convergencia (Ph.D. thesis), http://dialnet.unirioja.es/(2006)
  17. 17.
    Traub, J.F.: Iterative methods for the solution of equations, AMS Chelsea Publishing (1982)Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesCameron UniversityLawtonUSA
  2. 2.Department of Mathematical and Computational SciencesNIT KarnatakaMangaloreIndia
  3. 3.Department of MathematicsManipal Institute of TechnologyManipalIndia

Personalised recommendations