Skip to main content
Log in

A remark on the genus of curves in \({\mathbf {P}}^4\)

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Let C be an irreducible, reduced, non-degenerate curve, of arithmetic genus g and degree d, in the projective space \({\mathbf {P}}^4\) over the complex field. Assume that C satisfies the following flag condition of type (st): C does not lie on any surface of degree \(<s\), and on any hypersurface of degree \(<t\). Improving previous results, in the present paper we exhibit a Castelnuovo–Halphen type bound for g, under the assumption \(s\le t^2-t\) and \(d\gg t\). In the range \(t^2-2t+3\le s\le t^2-t\), \(d\gg t\), we are able to give some information on the extremal curves. They are arithmetically Cohen–Macaulay curves, and lie on a flag like \(S\subset F\), where S is a surface of degree s, F a hypersurface of degree t, S is unique, and its general hyperplane section is a space extremal curve, not contained in any surface of degree \(<t\). In the case \(d\equiv 0\) (modulo s), they are exactly the complete intersections of a surface S as above, with a hypersurface. As a consequence of previous results, we get a bound for the speciality index of a curve satisfying a flag condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the formula defining \(\rho \) in [2, p. 120], there is a misprint. In fact, in the case \(\epsilon \ge s-(\beta +1)(\alpha +\beta +2-t)\), the factor \(\alpha -\beta -6\) must be replaced by \(t-\beta -3\) (compare with [3, p. 2708], line 10 from below).

References

  1. Chiantini, L., Ciliberto, C., Di Gennaro, V.: The genus of projective curves. Duke Math. J. 70(2), 229–245 (1993)

    Article  MathSciNet  Google Scholar 

  2. Chiantini, L., Ciliberto, C., Di Gennaro, V.: The genus of curves in \({\mathbf{P}}^4\) verifying certain flag conditions. Manuscr. Math. 88, 119–134 (1995)

    Article  Google Scholar 

  3. Ciliberto, C., Di Gennaro, V.: Factoriality of certain threefolds complete intersections in \({\mathbf{P}}^5\) with ordinary double points. Commun. Algebra 32(7), 2705–2710 (2004)

    Article  Google Scholar 

  4. Di Gennaro, V.: Hierarchical structure of the family of curves with maximal genus verifying flag conditions. Proc. Am. Math. Soc. 136(3), 791–799 (2008)

    Article  MathSciNet  Google Scholar 

  5. Di Gennaro, V., Franco, D.: A speciality theorem for curves in \({\mathbf{P}}^5\). Geom. Dedic. 129, 89–99 (2007)

    Article  Google Scholar 

  6. Eisenbud, D., Harris, J.: Curves in Projective Space, Sém. Math. Sup., vol. 85. Les Presses de L’Université de Montréal, Montréal (1982)

  7. Ellia, P.: Introduzione alle curve dello spazio proiettivo. con la collaborazione di E. Mezzetti, Università degli Studi di Trieste, Dipartimento di Scienze Matematiche, Quaderni Matematici, II serie, vol. 273, pp. 1–58, luglio (1992)

  8. Ellinsgrud, G., Peskine, C.: Sur les surfaces lisses de \({\mathbf{P}}_4\). Invent. Math. 95, 1–11 (1989)

    Article  MathSciNet  Google Scholar 

  9. Gruson, L., Peskine, C.: Genre des courbes dans l’espace projectif. In: Algebraic Geometry: Proceedings, Norway, 1977. Lecture Notes in Mathematics, vol. 687, pp. 31–59. Springer, New York (1978)

  10. Gruson, L., Peskine, C.: Postulation des courbes gauches. In: Algebraic Geometry—Open Problems, Ravello 1982. Lecture Notes in Mathematics, vol. 997, pp. 218–227. Springer, New York (1983)

  11. Sernesi, E.: Topics on Families of Projective Schemes. Queen’s Papers in Pure and Applied Mathematics, vol. 73. Queen’s University, Kingston (1986)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Luca Chiantini and Ciro Ciliberto for valuable discussions and suggestions, and their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Gennaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We keep all the notation of Sects. 1 and 2.

(i) The function \(\rho =\rho (s,t,\epsilon )\) is defined as follows (see [2, p. 120]Footnote 1).

If \(\epsilon \ge s-(\beta +1)(\alpha +\beta +2-t)\), divide \(s-\epsilon -1=u(\alpha +\beta +2-t)+v\), and put:

$$\begin{aligned} \rho:= & {} \frac{s-1-\epsilon }{s}\left[ \frac{s^2}{2t}+\frac{s}{2}(t-4)-\frac{(t-1-\beta )(1+\beta )(t-1)}{2t}+1\right] +\frac{1+\epsilon }{2s}\left( s-\epsilon +1\right) \\&+{\left( {\begin{array}{c}u+v+1\\ 2\end{array}}\right) }-\frac{1}{2}(\alpha +\beta )(2v+u\alpha +u\beta -u^2)+\frac{1}{2}u(t-1)(t-\beta -3)-1; \end{aligned}$$

if \(\epsilon < s-(\beta +1)(\alpha +\beta +2-t)\), divide \(\epsilon =u(\alpha +\beta +1)+v\), and put:

$$\begin{aligned} \rho:= & {} \frac{s-1-\epsilon }{s}\left[ \frac{s^2}{2t}+\frac{s}{2}(t-4)-\frac{(t-1-\beta )(1+\beta )(t-1)}{2t}+1\right] +\frac{1+\epsilon }{2s}(s-\epsilon +1)\\&-\frac{1}{2}(\alpha +\beta )(t-u-1)(\alpha +t+u-3)+\frac{1}{2}\beta (t-1)(2\alpha -6)-1. \end{aligned}$$

Similarly, we define \(\rho '=\rho (s,\tau ,\epsilon )\) (compare with Sect. 2, (i)).

(ii) The number R appearing in (7) is defined as follows ([1, 5, pp. 91–92, (4) and (4\(^\prime \))]).

First, define k and \(\delta \) by dividing \(\epsilon =kw+\delta \), \(0\le \delta <w\), when \(\epsilon < (3-w_1)w\). Otherwise, define k and \(\delta \) by dividing \(\epsilon +2-w_1=k(w+1)+\delta \), \(0\le \delta < w+1\). Then we have:

$$\begin{aligned} R:=\frac{1+\epsilon }{2s}(s+1-\epsilon -2\pi )+w(\epsilon -\delta )-k{\left( {\begin{array}{c}w+1\\ 2\end{array}}\right) }+{\left( {\begin{array}{c}\delta \\ 2\end{array}}\right) }. \end{aligned}$$

(iii) Sketch of the proof of (6) We only prove that \(|\rho |\le 2t^3\) in the case \(\epsilon \ge s-(\beta +1)(\alpha +\beta +2-t)\). The analysis of the case \(\epsilon < s-(\beta +1)(\alpha +\beta +2-t)\), and the proof of the estimate \(|\rho '|\le 2t^3\), are quite similar, therefore we omit them.

Set:

$$\begin{aligned} H:=H(s,t):=\frac{s^2}{2t}+\frac{s}{2}(t-4)-\frac{(t-1-\beta )(1+\beta )(t-1)}{2t}+1. \end{aligned}$$
(17)

This number is the coefficient of the term \(\frac{s-1-\epsilon }{s}\) appearing in the definition of \(\rho \). By the way, notice that, if \(s>t^2-t\), then H is the Halphen’s bound for the genus of a space curve of degree s, not contained in any surface of degree \(<t\) ([9, p. 1], [7, 10.8. Teorema, p. 56]). We also notice we may write:

$$\begin{aligned} G(d,s,t)=\frac{d^2}{2s}+\frac{d}{2s}\left( 2H-2-s\right) +\rho +1. \end{aligned}$$
(18)

Taking into account that \(s-1=\alpha t+\beta \), we may rewrite H:

$$\begin{aligned} 2H=\alpha t^2+(\alpha ^2-4\alpha )t+\beta ^2+2\alpha +(2\alpha -1)\beta . \end{aligned}$$
(19)

The function \(\alpha \rightarrow \alpha ^2-4\alpha \) is growing for \(\alpha \ge 2\). Therefore, when \(\alpha \ge 2\), since \(0\le \alpha \le t-2\) and \(0\le \beta \le t-1\), it follows that:

$$\begin{aligned} 0\le 2H\le & {} (t-2)t^2+((t-2)^2-4(t-2))t+(t-1)^2 \nonumber \\&+2(t-2)+(2(t-2)-1)(t-1) =2\left( t^3-\frac{7}{2}t^2+\frac{5}{2}t+1\right) . \end{aligned}$$
(20)

This inequality holds true also for \(\alpha \le 1\). Hence

$$\begin{aligned} 0\le H\le t^3-\frac{7}{2}t^2+\frac{5}{2}t+1. \end{aligned}$$
(21)

Since \(\frac{s-1-\epsilon }{s}\ge 0\), \(H\ge 0\), and \(t-\beta -3\ge -2\), from the definition of \(\rho \) we deduce:

$$\begin{aligned} \rho \ge -\frac{1}{2}(\alpha +\beta )(2v+u\alpha +u\beta )-u(t-1)-1. \end{aligned}$$

Taking into account that

$$\begin{aligned} s\le t^2-t,\quad \alpha \le t-2,\quad v\le \alpha +\beta +1-t\le \beta -1\le t-2, \quad u\le \beta \le t-1, \end{aligned}$$
(22)

substituting in a similar manner as in (20), it follows that

$$\begin{aligned} \rho \ge -2t^3+5t^2-\frac{3}{2}t-\frac{7}{2}\ge -2t^3. \end{aligned}$$
(23)

Moreover, since \(\frac{s-1-\epsilon }{s}\le 1\),

$$\begin{aligned} \frac{1+\epsilon }{2s}(s-\epsilon +1)\le \frac{1}{2}(s+1)\le \frac{1}{2}(t^2-t+1), \end{aligned}$$

and \(u\le \beta \) (which implies that \(u\beta -u^2\ge 0\), so \(-\frac{1}{2}(\alpha +\beta )(2v+u\alpha +u\beta -u^2)\le 0\)), from (21), (22), and the definition of \(\rho \), it follows that:

$$\begin{aligned} \rho\le & {} H + \frac{1}{2}(t^2-t+1)+\frac{1}{2}(u+v+1)(u+v)+\frac{1}{2}ut(t-1) \\\le & {} \left( t^3-\frac{7}{2}t^2+\frac{5}{2}t+1\right) + \frac{1}{2}(t^2-t+1)+\frac{1}{2}(2t-2)(2t-3)+\frac{1}{2}t(t-1)^2 \\= & {} \frac{3}{2}t^3-2t^2-\frac{5}{2}t+\frac{9}{2}\le 2t^3. \end{aligned}$$

Combining this estimate with (23), we deduce \(|\rho |\le 2t^3\), in the case \(s\le t^2-t\) and \(\epsilon \ge s-(\beta +1)(\alpha +\beta +2-t)\).

(iv) Proof of (8) Recall that \(s-1=2w+w_1\), \(0\le w_1\le 1\), and \(\pi =w(w-1+w_1)\) (compare with Sect. 2, (iii), and with this “Appendix”, (ii)). Hence we have:

$$\begin{aligned} s+1-\epsilon -2\pi \le s+1-2\pi =\frac{1}{2}(-s^2+6s+w_1^2-2w_1-1)\le \frac{1}{2}(6s-s^2). \end{aligned}$$

Therefore, if \(s\ge 6\), then \(s+1-\epsilon -2\pi \le 0\). In this case, taking into account that \(w\le (s-1)/2\) and that \(\delta \le w\), we have:

$$\begin{aligned} R\le & {} w\epsilon +\frac{1}{2}\delta (\delta -1)\le w(s-1)+\frac{1}{2}w(w-1)\\\le & {} \frac{1}{2}(s-1)^2+\frac{1}{2}\frac{s-1}{2}\frac{s-3}{2}\le \frac{5}{8}(s-1)^2\le s^2. \end{aligned}$$

An easy direct computation shows that the inequality \(R\le s^2\) holds true also when \(3\le s\le 5\). Therefore we have:

$$\begin{aligned} R\le s^2. \end{aligned}$$
(24)

On the other hand we have:

$$\begin{aligned} R\ge \frac{1+\epsilon }{2s}(-\epsilon -2\pi )-w\delta -\frac{1}{2}w(w+1)k. \end{aligned}$$

Hence:

$$\begin{aligned} -R\le & {} \frac{1}{2}(s-1+2\pi )+w\delta +\frac{1}{2}w(w+1)k \nonumber \\= & {} \frac{1}{2}\left( \frac{1}{2}s^2-s+\frac{1}{2}+w_1-\frac{1}{2}w_1^2\right) +w\delta +\frac{1}{2}w(w+1)k. \end{aligned}$$
(25)

When \(\epsilon < w(3-w_1)\), then \(\delta \le w-1\) and \(k\le 2\). Therefore, in this case, from (25) we have:

$$\begin{aligned} -R\le & {} \frac{1}{2}\left( \frac{1}{2}s^2-s+1\right) +w(w-1)+w(w+1)\\= & {} \frac{1}{2}\left( \frac{1}{2}s^2-s+1\right) +2w^2\le \frac{1}{2}\left( \frac{1}{2}s^2-s+1\right) +2\frac{(s-1)^2}{4}= \frac{3}{4}s^2-\frac{3}{2}s+1\le s^2. \end{aligned}$$

When \(\epsilon \ge w(3-w_1)\), then \(\delta \le w\) and \(k\le \frac{2(s+1)}{s}\). From (25) we get:

$$\begin{aligned} -R\le & {} \frac{1}{2}\left( \frac{1}{2}s^2-s+1\right) +w^2+w(w+1)\frac{s+1}{s}\\\le & {} \frac{1}{2}\left( \frac{1}{2}s^2-s+1\right) +\frac{(s-1)^2}{4}+(s^2-1)\frac{s+1}{4s}= \frac{1}{4s}\left( 3s^3-3s^2+2s-1\right) \le s^2. \end{aligned}$$

Combining with (24), we get \(|R|\le s^2\).

(v) Proof of Lemma 2.1 Consider the coefficient of \(\frac{d}{2}\) in the expression defining G(dst) and \(G(d,s,\tau )\) (Sect. 2, (ii)):

$$\begin{aligned}&A:=\frac{s}{t}+t-5-\frac{(t-1-\beta )(1+\beta )(t-1)}{st},\\&A':=\frac{s}{\tau }+\tau -5-\frac{(\tau -1-\beta ')(1+\beta ')(\tau -1)}{s\tau }. \end{aligned}$$

We have:

$$\begin{aligned} G(d,s,\tau )=G(d,s,t)+\frac{d}{2}(A'-A)+(\rho '-\rho ). \end{aligned}$$
(26)

Observe that (compare with (17)):

$$\begin{aligned} H=\frac{s}{2}(A+1)+1, \quad H'=\frac{s}{2}(A'+1)+1, \end{aligned}$$

where \(H'=H(s,\tau )\). Hence, by (19) (compare with Sect. 2, (i)), we have:

$$\begin{aligned} A'-A= & {} \frac{2}{s}(H'-H)=\frac{1}{s}\left[ \alpha '\tau ^2+(\alpha '^2-4\alpha ')\tau +\beta '^2 +2\alpha '+(2\alpha '-1)\beta '\right] \\&-\frac{1}{s}\left[ \left( \alpha t^2+(\alpha ^2-4\alpha )t+\beta ^2 +2\alpha +(2\alpha -1)\beta \right) \right] . \end{aligned}$$

Simplifying, we get:

$$\begin{aligned} A'-A=\frac{\alpha x}{s}(\alpha x+\alpha +x-2t+3+2\beta ). \end{aligned}$$

Hence, if \(\alpha x=0\), then \(A'=A\). When \(\alpha >0\) and \(x>0\), since \(-(t-\beta )<-x(\alpha +1)\), we have:

$$\begin{aligned} \alpha x+\alpha +x-2t+3+2\beta= & {} \alpha x+\alpha +x-2(t-\beta )+3\\\le & {} \alpha x+\alpha +x-2(x(\alpha +1)+1)+3=(1-x)(\alpha +1)\le 0. \end{aligned}$$

If \(x=1\), then the number

$$\begin{aligned} \alpha x+\alpha +x-2t+3+2\beta =2\alpha +4-2t+2\beta \end{aligned}$$

vanishes if and only if \(\beta =t-\alpha -2\). Summing up, we get: in any case, one has \(A'\le A\). Moreover, \(A'=A\)if and only if either \(\alpha =0\)or \(x=0\)or \(x=1\)and \(\beta =t-\alpha -2\), i.e. if and only if either \(s\le t\)or \(s\ge t+1\)and \(t-\alpha -2\le \beta <t\). In particular, when \(A'<A\), then \(A-A'\ge \frac{\alpha }{s}\ge \frac{1}{st}\).

We deduce the following.

(1) If \(t+1\le s\le t^2-t\) and \(\beta <t-\alpha -2\), then \(A'<A\). Therefore, from (6) and (26), we deduce that \(G(d,s,\tau ) < G(d,s,t)\) for \(d>8st^4\). In fact, in this case, we have \(\frac{d}{2}(A'-A)+(\rho '-\rho )<0\), because \( \frac{2(\rho '-\rho )}{A-A'}\le 2\cdot 4t^3\cdot st\).

(2) If \(s\le t^2-t\) and \(t-\alpha -2<\beta \), then \(A=A'\). Hence, (26) becomes \(G(d,s,\tau )=G(d,s,t)+(\rho '-\rho )\). A direct computation, which we omit, shows that, in this case, if either \(s-\epsilon -1<\alpha +\beta +2-t\) or \(\beta (\alpha +\beta +2-t)\le s-\epsilon -1<(\beta +1)(\alpha +\beta +2-t)\), then \(\rho =\rho '\). Hence, we have \(G(d,s,\tau )=G(d,s,t)\).

(3) If either \(s\le t\) or \(t+1 \le s\le t^2-t\) and \(t-\alpha -2\le \beta \), then \(A=A'\). Therefore, by (6) and (26), we get \(G(d,s,\tau )=G(d,s,t)+(\rho '-\rho )\le G(d,s,t)+4t^3\).

This concludes the proof of Lemma 2.1.

(vi) Proof of Lemma 2.2 Consider the coefficient of \(\frac{d}{2}\) in the formula (7) defining G:

$$\begin{aligned} A'':=\frac{2\pi -2}{s}-1. \end{aligned}$$

We have:

$$\begin{aligned} G=G(d,s,t)+\frac{d}{2}(A''-A)+(R-\rho -1). \end{aligned}$$
(27)

A direct computation proves that:

$$\begin{aligned} A''-A=\frac{1}{2s}\left[ (\alpha ^2-2\alpha )t^2+(2\alpha \beta +6\alpha -2\alpha ^2)t+ (-4\alpha -\beta ^2-4\alpha \beta +w_1)\right] . \end{aligned}$$

If \(\alpha =0\), i.e. \(s\le t\), then \(s=\beta +1\), and

$$\begin{aligned} A''-A=\frac{1}{2s}(-\beta ^2+w_1). \end{aligned}$$

If \(t+1\le s\le 2t-3\), then \(\alpha =1\), and we have:

$$\begin{aligned} A''-A=\frac{1}{2s}\left[ -(t-\beta -2)^2+w_1\right] . \end{aligned}$$

In both cases we have \(A''-A<-\frac{1}{2s}\). Therefore, from (27) and (8), we deduce that \(G < G(d,s,t)\) for \(d> 32t^4\), because in this case \(\frac{d}{2}(A''-A)+(R-\rho -1)<0\) (in fact: \( \frac{2(R-\rho -1)}{A-A''}\le 4s(s^2+2t^3)\le 32t^4\)).

This concludes the proof of Lemma 2.2.

Remark 6.1

A similar argument shows that if \(2t-2\le s\le 2t\), then \(A''=A\), and that if \(t>2\) ed \(s\ge 2t+1\), then \(A''>A\). Moreover, notice that, when \(s\ge t+1\) and \(t-\alpha -2\le \beta \), it may happen that \(G(d,s,\tau )>G(d,s,t)\). For instance, if \(s=t^2-2t+6\) and \(\epsilon =s-25\), then \(\rho '-\rho =2(t+1)\).

(vii) Proof of (12) Since \(t^2-2t+3\le s\le t^2-t\), we have

$$\begin{aligned} s-1=(t-2)t+\beta ,\quad 2\le \beta \le t-1. \end{aligned}$$

Inserting into (17), we get:

$$\begin{aligned} H(s,t)= & {} \frac{((t-2)t+\beta +1)^2}{2t}+\frac{(t-2)t+\beta +1}{2}(t-4)-\frac{(t-1-\beta )(1+\beta )(t-1)}{2t}+1\\= & {} t^3-5t^2+(\beta +7)t+\frac{\beta ^2-5\beta }{2}-2\\= & {} \left( t^3-5t^2+(\beta +7)t+\frac{\beta ^2-7\beta }{2}-1\right) +\beta -1= P(s,t)+\beta -1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Gennaro, V. A remark on the genus of curves in \({\mathbf {P}}^4\). Rend. Circ. Mat. Palermo, II. Ser 69, 1079–1091 (2020). https://doi.org/10.1007/s12215-019-00456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-019-00456-7

Keywords

Mathematics Subject Classification

Navigation