Advertisement

Fuglede–Putnam theorem for \((\alpha , \beta )\)-normal operators

  • A. BachirEmail author
  • T. Prasad
Article
  • 3 Downloads

Abstract

In this paper, we obtain some properties of \((\alpha , \beta )\)-normal and we prove following assertions.
  1. (i)

    If T is \((\alpha , \beta )\)-normal operator, S is an invertible operator and X is a Hilbert–Schmidt operator such that \(TX=XS\), then \(T^{*}X=XS^{*}\).

     
  2. (ii)

    If T is totally \((\alpha , \beta )\)-normal operator, then the range of generalized derivation \(\delta _{T}: \mathcal {B}( {\mathcal H}) \ni X \rightarrow TX- XT \in \mathcal {B}( {\mathcal H}) \) is orthogonal to its kernel.

     

Keywords

Fuglede–Putnam theorem Hyponormal operator \((\alpha</Keyword> <Keyword>\beta )\)-Normal operator Orthogonality 

Mathematics Subject Classification

47B20 47A10 

Notes

References

  1. 1.
    Berberian, S.K.: Extensions of a theorem of Fuglede and Putnam. Proc. Am. Math. Soc. 71, 113–114 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)zbMATHGoogle Scholar
  3. 3.
    Bachir, A., Lombarkia, F.: Fuglede–Putnam’s theorem for w-hyponormal operators. Math. Inequal. Appl. 15, 777–786 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bachir, A.: Fuglede–Putnam theorem for \(w\)-hyponormal or class \({\cal{Y}}\) operators. Ann. Funct. Anal. 4(1), 53–60 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berberian, S.K.: Approximate proper vectors. Proc. Am. Math. Soc. 13, 111–114 (1962)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brown, A., Percy, C.: Spectra of tensor products of operators. Proc. Am. Math. Soc. 17, 162–166 (1966)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dragomir, S.S., Moslehian, M.S.: Some inequalities for \((\alpha , \beta )\)-normal operators in Hilbert spaces. Series Mathematics and Informatics, pp. 39–47 (2008)Google Scholar
  8. 8.
    Douglas, R.G.: On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–415 (1966)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Furuta, T.: An extenstion of the Fuglede theorem to subnormal operators using a Hilbert–Schmidt norm inequality. Proc. Am. Math. Soc. 81, 240–242 (1981)CrossRefGoogle Scholar
  10. 10.
    Hou, J.C.: On tensor products of operators. Acta Math. Sin. 91, 195–202 (1993)zbMATHGoogle Scholar
  11. 11.
    Moore, R.L., Rogers, D.D., Trent, T.T.: A note on intertwining M-hyponormal operators. Proc. Am. Math. Soc. 83, 514–516 (1981)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mecheri, S.: Finite operators and orthogonality. Nihonkai Math. 19, 53–60 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mecheri, S.: A generalization of Fuglede–Putnam theorem. J. Pure Math. 21, 31–38 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Moslehian, M.S.: On \((\alpha , \beta )\)-normal operators in Hilbert spaces, pp. 39–47. Problem, IMAGE (2007)Google Scholar
  15. 15.
    Senthilkumar, D., Sherin Joy, S.M.: On totally \((\alpha, \beta )\)-normal operators. Far East J. Math. Sci. (FJMS) 71(1), 151–167 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Pagacz, P.: The Putnam–Fuglede property for paranormal and *-paranormal operators. Opusc. Math. 33(3), 565–574 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Putnam, C.R.: On the normal operators on Hilbert space. Am. J. Math. 73, 357–362 (1951)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rashid, M.H.M., Noorani, M.S.M.: On relaxation normality in the Fulgede–Putnam’s theorem for a quasi-class \({\cal{A}}\) operators. Tamkang. J. Math. 40, 307–312 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Stochel, J.: Seminormality of operators from their tensor product. Proc. Am. Math. Soc. 124, 435–440 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Uchiyama, A., Tanahashi, K.: Fuglede–Putnam’s theorem for p-hyponormal or log-hyponormal operators. Glasgow Math. J. 44, 397–410 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Takahashi, K., Uchiyama, M.: Every \(C_{00}\) contractions with Hilbert-Schmidt defect operator is of class \(C_{0}\). J. Oper. Theory 12, 331–335 (1983)zbMATHGoogle Scholar
  22. 22.
    Yoshino, T.: Remark on the generalized Putnam–Fuglede theorem. Proc. Am. Math. Soc. 95, 571–572 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Williams, J.P.: Finite operators. Proc. Am. Math. Soc. 26, 129–135 (1970)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wielandt, H.: Helmut ber die Unbeschrnktheit der Operatoren der Quantenmechanik, (German). Math. Ann. 121, 21 (1949)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of MathematicsCochin University of Science and TechnologyCochin-22India

Personalised recommendations