Advertisement

General decay of energy for a viscoelastic wave equation with a distributed delay term in the nonlinear internal dambing

  • Mohammed Aili
  • Ammar KhemmoudjEmail author
Article
  • 8 Downloads

Abstract

In this article, we consider a viscoelastic wave equation of Kirchhoff type in a bounded domain with a distributed delay term present in the nonlinear internal dambing. By introducing a functional energy and suitable Lyapunov functional, under suitable assumptions, we establish a general decay result from which the exponential and polynomial decay are only special cases.

Keywords

Viscoelastic Kirchhoff equation Frictional feedback Nonlinear distributed delay Convexity General decay rate 

Mathematics Subject Classification

35B40 35L20 74D99 93D15 26A51 

Notes

Acknowledgements

The authors wants to thank very much the anonymous referees for their effort to reading this article.

References

  1. 1.
    Adams, R.A.: Sobolev spaces. Pure and applied mathematics, vol. 65. Academic press, Cambridge (1978)Google Scholar
  2. 2.
    Apalara, T.A.: Well-posedness and exponential stability for a linear damped Timoshenko system with second sound and internal distributed delay. Electron. J. Differ. Equ. 2014(254), 1–15 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alabau-Boussouira, F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alabau-Boussouira, F., Cannarsa, P.: A general method for proving sharp energy decay rates for memory dissipative evolution equations. C. R. Acad. Sci. Paris 347(15–16), 867–872 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)CrossRefGoogle Scholar
  6. 6.
    Benaissa, A., Bahlil, M.: Global existence and energy decay of solutions to a nonlinear Timoshenko beam system with a delay term. Taiwan. J. Math. 18(5), 141–1437 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benaissa, A., Benaissa, A.K., Messaoudi, S.A.: Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks. J. Math. Phys. 53(12), 123514 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benaissa, A., Benguessoum, A., Messaoudi, S.A.: Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback. Int. J. Dyn. Syst. Diff. Equ. 5(1), 1–26 (2014)zbMATHGoogle Scholar
  9. 9.
    Cavalcanti, M.M., Cavalcanti, V.D., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236(2), 407–459 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42(4), 1310–1324 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feng, B., Zennir, K., Laouar, K.L.: Decay of an extensible viscoelastic plate equation with a nonlinear time delay. Bull. Malays. Math. Sci. Soc. (2018).  https://doi.org/10.1007/s40840-018-0602-4 Google Scholar
  12. 12.
    Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 32(3), 346–358 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kang, J.R., Lee, M.J., Park, S.H.: Asymptotic stability of a viscoelastic problem with Balakrishnan–Taylor damping and time-varying delay. Comput. Math. Appl. 74(6), 1506–1515 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62(6), 1065–1082 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. Masson Wiley, Paris (1994)zbMATHGoogle Scholar
  16. 16.
    Lasiecka, I., Doundykov, D.: Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal. 64(8), 1757–1797 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lasiecka, I., Wang, X.: Intrinsic decay rate estimates for semilinear abstract second order equations with memory. In: Favini A., Fragnelli G., Mininni R. (eds) New Prospects in Direct, Inverse and Control Problems for Evolution Equations. Springer INdAM Series, vol 10. pp. 271–303, Springer, Cham.  https://doi.org/10.1007/978-3-319-11406-4_14
  18. 18.
    Lions, J.L.: Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires. Dunod, Paris (in French) (1969)zbMATHGoogle Scholar
  19. 19.
    Liu, W.J.: General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term. Taiwan. J. Math. 17(6), 2101–2115 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69(8), 2589–2598 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mezouar, N., Abdelli, M., Rachah, A.: Existence of global solutions and decay estimates for a viscoelastic Petrovsky equation with a delay term in the non-linear internal feedback. Electron. J. Differ. Equ. 2017(58), 1–25 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mustafa, M.I.: A uniform stability result for thermoelasticity of type III with boundary distributed delay. J. Abstr. Differ. Equ. Appl. 2(1), 1–13 (2014)MathSciNetGoogle Scholar
  24. 24.
    Mustafa, M.I.: Uniform decay rates for viscoelastic dissipative systems. J. Dyn. Control Syst. 22(1), 101–116 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mustafa, M.I.: Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlinear Anal. Real World Appl. 13, 452–463 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mustafa, M.I., Messaoudi, S.A.: General stability result for viscoelastic wave equations. J. Math. Phys. 53(5), 053702 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mustafa, M.I., Abusharkh, G.A.: Plate equations with frictional and viscoelastic dampings. Appl. Anal. 96(7), 1170–1187 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mustafa, M.I., Kafini, M.: Energy decay for viscoelastic plates with distributed delay and source term. Z. Angew. Math. Phys. 67(3), 36 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mustafa, M.I., Kafini, M.: Exponential decay in thermoelastic systems with internal distributed delay. Palest. J. Math. 2(2), 287–299 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561–1585 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Nicaise, S., Pignotti, C.: Interior feedback stabilization of wave equations with time dependent delay. Electron. J. Differ. Equ. 41, 1–20 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21(9–10), 935–958 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Park, S.H.: Energy decay for a von Karman equation with time-varying delay. Appl. Math. Lett. 55, 10–17 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Park, J.Y., Kang, J.R.: Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Acta Appl. Math. 110(3), 1393–1406 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Park, J.Y., Park, S.H.: General decay for quasilinear viscoelastic equations with nonlinear weak damping. J. Math. Phys. 50(8), 083505 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  37. 37.
    Sabbagh, Z., Khemmoudj, A., Ferhat, M., Abdelli, M.: Existence of global solutions and decay estimates for a viscoelastic Petrovsky equation with internal distributed delay. Rend. Circ. Mat. Palermo, Ser. 2, 1–22 (2018).  https://doi.org/10.1007/s12215-018-0373-7 Google Scholar
  38. 38.
    Yang, Z.: Existence and energy decay of solutions for the Euler–Bernoulli viscoelastic equation with a delay. Z. Angew. Math. Phys. 66(3), 727–745 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of Sciences and Technology Houari BoumedienneBab Ezzouar, AlgiersAlgeria

Personalised recommendations