Advertisement

Semiperfect rings and their extensions

  • Samah A. Al-Hashmi
  • S. Khalid NaumanEmail author
Article
  • 2 Downloads

Abstract

The aim of this work is to study transfer of properties of some types of modules over semiperfect rings and their extensions. We have also studied the impact of NI, NCI, abelian and reduced rings on semiperfect rings.

Keywords

Ring extension Semiperfect rings NI rings NCI rings 

Mathematics Subject Classification

16D10 16L30 13B02 16N20 16K99 

Notes

References

  1. 1.
    Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Graduate Texts in Mathematics, vol. 13, 2nd edn. Springer, New York (1992)CrossRefGoogle Scholar
  2. 2.
    Al-Hashmi, S.A., Nauman, S.K.: A study of modules over rings and their extensions. Ukr. Math. J. 70(10), 1299–1312 (2018)Google Scholar
  3. 3.
    Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Am. Math. Soc. 59(3), 466–488 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Camillo, V.P., Yu, H.P.: Exchange rings, units and idempotents. Commun. Algebra 22(12), 4737–4794 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Huh, C., Kim, H.K., Lee, Y.: Basic examples and extensions of symmetric rings. J. Pure Appl. Algebra 202(1–3), 154–167 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kim, B.O., Lee, Y.: Minimal noncommutative reversible and reflexive rings. Bull. Korean Math. Soc. 48(3), 611–616 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Koh, K.: On a semiprimary ring. Proc. Am. Math. Soc. 19(1), 205–208 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, 2nd edn. Springer, New York (2001)CrossRefGoogle Scholar
  9. 9.
    Malik, D.S., Mordeson, J.N., Sen, M.K.: Fundamentals of Abstract Algebra. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1997)Google Scholar
  10. 10.
    Sandomierski, F.L.: On semiperfect and perfect rings. Proc. Am. Math. Soc. 21(1), 205–207 (1969)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.King Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations