Existence of renormalized solutions for some nonlinear elliptic equations in Orlicz spaces

  • M. BourahmaEmail author
  • A. Benkirane
  • J. Bennouna


In this work, we prove an existence theorem of renormalized solutions for nonlinear elliptic problem of the type
$$\begin{aligned} -{\text {div}}\>a(x,u,\nabla u)-\mathop {{\mathrm{div}}}\Phi (x,u)= f \quad \text {in }{\Omega }, \end{aligned}$$
where the lower order term \(\Phi \) verifies the natural growth condition
$$\begin{aligned} |\Phi (x,s)|\le \gamma (x)+\overline{M}^{-1}(M(|s|)), \text { with } \gamma \in E_{\overline{M}}(\Omega ). \end{aligned}$$
No \(\Delta _{2}\)-condition is needed neither on the N-function M nor on its complementary \(\overline{M}\).


Elliptic problem Orlicz spaces Renormalized solutions 

Mathematics Subject Classification




  1. 1.
    Adams, R.: Sobolev Spaces. Academic Press Inc., New York (1975)zbMATHGoogle Scholar
  2. 2.
    Boccardo, L., Giachetti, D., Diaz, J.I., Murat, F.: Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms. J. Differ. Equ. 106, 215–237 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right hand side measure. Commun. Partial Differ. Equ. 17, 641–655 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chlebicka, I., Giannetti, F., Zatorska-Goldstein, A.: Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or \(L^1\) data. arXiv:1807.11275
  6. 6.
    Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solution of elliptic equation with general measure data. Ann. Scuola Norm. Sup. Pisa CI. Sci. 28(4), 741–808 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. soc. 190, 163–205 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gossez, J.P., Mustonen, V.: Variationnal inequalities in Orlicz–Sobolev spaces. Nonlinear Anal. 11, 317–492 (1987)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gwiazda, P., Skrzypczak, P., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space. J. Differ. Equ. 264(1), 341–377 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Moussa, H., Rhoudaf, M.: Study of some non-linear elliptic problems with no continuous lower order terms in Orlicz spaces. Mediterr. J. Math. 13, 4867–4899 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Moussa, H., Rhoudaf, M.: Renormalized solution of nonlinear elliptic problems with no continuous lower order terms in Orlicz spaces. Ricerche Mat. 66, 591–617 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Musielak, J.: Orlicz Spaces and Modular Spaces, Lecture Note in Mahtematics, vol. 1034. Springer, Berlin (1983)CrossRefGoogle Scholar
  13. 13.
    Rakotoson, J.M.: Uniqueness of renormalized solution in a T-set for the L1-data problem and the link between various formulations. Indiana Univ. Math. J. 43(2), 7685–702 (1994)CrossRefGoogle Scholar
  14. 14.
    Stampacchia, G.: Equations Elliptiques du second ordre coefficients discontinus. Les Presses de LUniversite de Montreal (1966)Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar el MahrazSidi Mohamed Ben Abdellah UniversityFez-Atlas, FezMorocco

Personalised recommendations