Advertisement

Long time behavior for a fractional Picard problem in a Hilbert space

  • Saïd MazouziEmail author
  • Nasser-Eddine Tatar
Article

Abstract

Of concern is a nonlinear second order initial value differential problem involving a convolution of a singular kernel with the derivative of the state. The problem describes the dynamics of a single-degree-of-freedom fractional oscillator. It is a generalization of the standard harmonic oscillator. The model also generalizes some well-known fractionally damped second order differential equations such as the Bagley–Torvik equation. Moreover, it extends models using exponential non-viscous damping to the more challenging singular case. We prove an exponential stability result of the equilibrium using the multiplier technique. A new energy functional, different from the classical one and different from the one obtained by the diffusive representation, is introduced.

Keywords

Exponential decay Memory term Fractional damping Multiplier technique 

AMS subject classifications

34D20 34K37 

Notes

Acknowledgements

The authors are thankful to the referees of the present paper for their careful reading and valuable comments. The second author is grateful to King Fahd University of Petroleum and Minerals for its continuous financial support through Project No. IN161010.

References

  1. 1.
    Biot, M.A.: Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys. Rev. 97, 1463–1469 (1955)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Biot, M. A.: Linear thermodynamics and the mechanics of solids. In: Proceedings of Third U. S. National Congress of Applied Mechanics. pp. 1–18 (1958)Google Scholar
  3. 3.
    Brandon, D.: Global existence and asymptotic stability for a nonlinear integrodifferential equation modeling heat flow. SIAM J. Math. Anal. 22(1), 72–106 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandon, D., Hrusa, W.J.: Global existence of smooth shearing motions of a nonlinear viscoelastic fluid. J. Integral Equ. Appl. 2(3), 333–351 (1990). SummerMathSciNetCrossRefGoogle Scholar
  5. 5.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    El-Sayed, A.M.A., Gaafar, F.M.: Exact solution of linear differential equations of fractional order. Kyungpook Math. J. 37, 181–189 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: Numerical solution for multi-term fractional (arbitrary) orders differential equations. Comput. Appl. Math. 23(1), 33–54 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fukunaga, M., Shimizu, N.: Analytical and numerical solutions for fractional viscoelastic equations. JSME Intern. J. Ser. C 74(1), 251–259 (2004)CrossRefGoogle Scholar
  9. 9.
    Fukunaga, M., Shimizu, N.: Role of prehistories in the initial value problems of fractional viscoelastic equations. Nonlinear Dyn. 38, 207–220 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  11. 11.
    Hai, D.D.: Existence and uniqueness of solutions for a nonlinear second order differential equation in Hilbert spaces. Proc. Edinb. Math. Soc. 33, 89–95 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hanyga, A., Seredyńska, M.: Nonlinear 2 dof pendulum with fractional damping. Acta Mech. 176, 169–183 (2005)CrossRefGoogle Scholar
  13. 13.
    Hedrih, K., Filipovski, A.: Longitudinal creep vibrations of a fractional derivative order rheological rod with variable cross section. Facta Univ. Ser. Mech. Autom. Control Robot. 3(12), 327–349 (2002)zbMATHGoogle Scholar
  14. 14.
    Hrusa, W.J., Renardy, M.: A model equation for viscoelasticity with a strongly singular kernel. SIAM J. Math. Anal. 19(2), 257–269 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  16. 16.
    Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, L., Duan, J.: A detailed analysis for the fundamental solution of fractional vibration equation. Open Math. 13, 826–838 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM Proc. Fract. Differ. Syst. Models Methods Appl. 5, 145–158 (1998)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Matignon, D., Prieur, C.: Asymptotic stability of linear conservative systems when coupled with diffusive systems. ESAIM Control Opt. Calc. Var. 11, 487–507 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Naber, M.: Linear fractionally damped oscillator. Intern. J. Diff. Equ. Article ID 197020, 12 pages (2010)Google Scholar
  21. 21.
    Nohel, J.A., Shea, D.F.: Frequency domain methods for Volterra equations. Adv. Math. 22, 278–304 (1976)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Scott-Blair, G.W.: Analytical and integrative aspects of the stress–strain–time problem. J. Sci. Instr. 21, 80–84 (1944)CrossRefGoogle Scholar
  23. 23.
    Scott-Blair, G.W.: A Survey of General and Applied Rheology. Pitman, London (1949)zbMATHGoogle Scholar
  24. 24.
    Sieber, J., Wagg, D.J., Adhikari, S.: On the interaction of exponential non-viscous damping with symmetric nonlinearities. J. Sound Vib. 314, 1–11 (2008)CrossRefGoogle Scholar
  25. 25.
    Sheng, J., Jiang, W.: Existence and uniqueness of the solution of fractional damped dynamical systems. Adv. Differ. Equ. 16, 1–14 (2017)MathSciNetGoogle Scholar
  26. 26.
    Staffans, O.J.: On a nonlinear hyperbolic Volterra equation. SIAM J. Math. Anal. 11(5), 793–812 (1980)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Suarez, L., Shokooh, A.: Response of systems with damping materials modeled using fractional calculus. Appl. Mech. Rev. 48(11), 118–126 (1995)CrossRefGoogle Scholar
  28. 28.
    Suarez, L., Shokooh, A.: An eigenvector expansion method for the solution of motion containing fractional derivatives. J. Appl. Mech 64(3), 629–635 (1997)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tatar, N.-E.: The decay rate for a fractional differential equation. J. Math. Anal. Appl. 295, 303–314 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. ASME J. Appl. Mech. 51, 294–298 (1984)CrossRefGoogle Scholar
  31. 31.
    Wang, Z.H., Hu, H.Y.: Stability of a linear oscillator with damping force of the fractional-order derivative. Sci China Phys Mech Astron 53(2), 345–352 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, Z.H., Wang, X.: General solution of a vibration system with damping force of fractional-order derivative. In: Luo, A.C.J. (ed.) Dynamical Systems: Discontinuity, Stochasticity and Time-Delay, pp. 3–11. Springer, Berlin (2010).  https://doi.org/10.1007/978-1-4419-5754-21 CrossRefGoogle Scholar
  33. 33.
    Wang, Z.H.: Solution and stability of a linear fractionally damped oscillator. In: Stepan, G., et al. (eds.) Dynamics Modeling & Interaction Control. IUTAM Book Series 30, pp. 101–108. Springer, Berlin (2011)Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Applied MathematicsBadji Mokhtar-Annaba UniversityAnnabaAlgeria
  2. 2.Department of Mathematical SciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations