Advertisement

Characterization of capable nilpotent n-Lie algebras of class two by their Schur multipliers

  • Zahra Hoseini
  • Farshid Saeedi
  • Hamid Darabi
Article
  • 20 Downloads

Abstract

In this paper, we classify the generalized Heisenberg nilpotent n-Lie algebras of rank two with dimension at most \(2n+3\). Using them, we classify capable nilpotent n-Lie algebras with two-dimensional derived subalgebra. We also obtain the dimension of the Schur multiplier of nilpotent n-Lie algebras of class two with two-dimensional derived subalgebra.

Keywords

Capable n-Lie algebra Schur multiplier Nilpotent n-Lie algebra 

Mathematics Subject Classification

Primary 17B05 17B30 Secondary 17D99 

References

  1. 1.
    Bai, R., Song, G., Zhang, Y.: On classification of \(n\)-Lie algebras. Front. Math. China 6(4), 581–606 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, R., Wang, X., Xiao, W., An, H.: The structure of low dimensional \(n\)-Lie algebras over a field of characteristic 2. Linear Algebra Appl. 428(8–9), 1912–1920 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beyl, F.R., Tappe, J.: Extensions, Representations and the Schur Multiplicator. Lecture Notes in Mathematics, vol. 958. Springer, Berlin (1982)CrossRefGoogle Scholar
  4. 4.
    Darabi, H., Saeedi, F.: On the Schur multiplier of \(n\)-Lie algebras. J. Lie Theory 27(1), 271–281 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Darabi, H., Saeedi, F., Eshrati, M.: A characterization of finite dimensional nilpotent Filippov algebras. J. Geom. Phys. 101, 100–107 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Darabi, H., Saeedi, F., Eshrati, M.: Capable \(n\)-Lie algebras and the classification of nilpotent \(n\)-Lie algebras with \(s(A)=3\). J. Geom. Phys. 110, 25–29 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Doosti, A., Saeedi, F.: On ideal epicenter in Filippov algebras (submitted) Google Scholar
  8. 8.
    Eshrati, M., Saeedi, F., Darabi, H.: On the Schur multiplier of nilpotent \(n\)-Lie algebras. J. Algebra 450, 162–172 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Eshrati, M., Saeedi, F., Darabi, H.: Low dimensional nilpotent \(n\)-Lie algebras. arXiv:1810.03782
  10. 10.
    Filippov, V.T.: \(n\)-Lie algebras. Siberian Math. J. 26(6), 126–140 (1985)zbMATHGoogle Scholar
  11. 11.
    Hosseini, Z., Saeedi, F., Darabi, H.: On the classification of \((n+5)\)-dimensional nilpotent \(n\)-Lie algebras of class two. arXiv:1802.06961
  12. 12.
    Kasymov, S.M.: On a theory of \(n\)-Lie algebras. Algebra i Logika 26(3), 277–297 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Niroomand, P., Johari, F., Parvizi, M.: On the capability and Schur multiplier of nilpotent Lie algebra of class two. Proc. Am. Math. Soc. 144(10), 4157–4168 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Niroomand, P., Parvizi, M., Russo, F.G.: Some criteria for detecting capable Lie algebras. J. Algebra 384, 36–44 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Salemkar, A.R., Alamian, V., Mohammadzadeh, H.: Some properties of the Schur multiplier and covers of Lie algebras. Commun. Algebra. 36(2), 697–707 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Department of MathematicsEsfarayen University of TechnologyEsfarayenIran

Personalised recommendations