Advertisement

On horizontal recurrent Finsler connections

  • Nabil L. Youssef
  • A. SoleimanEmail author
Article
  • 30 Downloads

Abstract

In this paper we adopt the pullback approach to global Finsler geometry. We investigate horizontally recurrent Finsler connections. We prove that for each scalar (\(\pi \))1-form A, there exists a unique horizontally recurrent Finsler connection whose h-recurrence form is A. This result generalizes the existence and uniqueness theorem of Cartan connection. We then study some properties of a special kind of horizontally recurrent Finsler connection, which we call special HRF-connection.

Keywords

Finsler manifold Cartan connection Horizontal recurrent Finsler connection h-Isotropic P-symmetric 

Mathematics Subject Classification

53B40 53C60 

Notes

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and useful comments which improved this paper.

References

  1. 1.
    Bao, D., Chern, S.S., Shen, Z.: An Introuduction to Riemann–Finsler Geometry. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dazord, P.: Propriétés globales des géodésiques des espaces de Finsler, Thèse d’Etat, (575) Publ. Dept. Math, Lyon (1969)Google Scholar
  3. 3.
    Grifone, J.: Structure présque-tangente et connexions, I. Ann. Inst. Fourier Grenoble 22(1), 287–334 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grifone, J.: Structure presque-tangente et connexions, II. Ann. Inst. Fourier Grenoble 22(3), 291–338 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hashiguchi, M.: On determinations of Finsler connections by deflection tensor fields. Rep. Fac. Sci. Kagoshima Univ. 2, 29–39 (1969)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hojo, S.: On the determination of generalized Cartan connections and fundamental functions of Finsler spaces. Tensor N. S. 35, 333–344 (1981)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Klein, J., Voutie, A.: Formes extérieures génératrices de sprays. Ann. Inst. Fourier Grenoble 18(1), 241–260 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Matsumoto, M.: Finsler connections with many torsions. Tensor N. S. 17, 217–226 (1966)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications, vol. 59. Kluwer Acad. Publ, Dordrecht (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Prasad, B.N., Srivastava, L.: On \(hv\)-recurrent Finsler connection. Indian J. Pure Appl. Math. 20, 790–798 (1989)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Prasad, B.N., Shukla, H.S., Singh, D.D.: On recurrent Finsler connections with deflection and torsion. Publ. Math. Debrecen 35, 77–84 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Soleiman, A.: Recurrent Finsler manifolds under projective change. Int. J. Geom. Methods Mod. Phys. 13, 1650126 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Youssef, N.L.: Sur les tenseurs de courbure de la connexion de Berwald et ses distributions de nullité. Tensor N. S. 36, 275–280 (1982)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Youssef, N.L., Abed, S.H., Soleiman, A.: Cartan and Berwald connections in the pullback formalism. Algebr. Groups Geom. 25, 363–384 (2008). arXiv:0707.1320 [math. DG]MathSciNetzbMATHGoogle Scholar
  15. 15.
    Youssef, N.L., Abed, S.H., Soleiman, A.: A global approach to the theory of special Finsler manifolds. J. Math. Kyoto Univ. 48, 857–893 (2008). arXiv:0704.0053 [math. DG]MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Youssef, N.L., Abed, S.H., Soleiman, A.: A global approach to the theory of connections in Finsler geometry. Tensor N. S 71, 187–208 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Youssef, N.L., Abed, S.H., Soleiman, A.: Geometric objects associated with the fundumental connections in Finsler geometry. J. Egypt. Math. Soc. 18, 67–90 (2010)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Mathematics, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations