Weak convergence of infinite products of operators in Hadamard spaces

  • Simeon ReichEmail author
  • Zuly Salinas


We first prove the weak convergence of iterates of both products and convex combinations of strongly nonexpansive operators in complete CAT(0) spaces. Then we establish the weak convergence of infinite products of possibly discontinuous approximations to such operators. Our main focus is on nearest point projections.


CAT(0)  space Convex combination  Exact orbit Firmly nonexpansive operator Hadamard space Inexact orbit Infinite product Nearest point projection Strongly nonexpansive operator Weak convergence 

Mathematics Subject Classification

41A65 47H09 47H14 47J25 47N10 



This research was partially supported by the Israel Science Foundation (Grant 389/12), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.


  1. 1.
    Ariza-Ruiz, D., Leuştean, L., López-Acedo, G.: Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc. 366, 4299–4322 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ariza-Ruiz, D.,López-Acedo, G., Nicolae, A.: The asymptotic behavior of the composition of firmly nonexpansive mappings. J. Optim. Theory Appl. (2015, accepted for publication)Google Scholar
  3. 3.
    Bačák, M.: Convex analysis and optimization in hadamard spaces. De Gruyter, Berlin (2014)zbMATHGoogle Scholar
  4. 4.
    Bačák, M., Searston, I., Sims, B.: Alternating projections in CAT(0) spaces. J. Math. Anal. Appl. 385, 599–607 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baillon, J.-B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4, 1–9 (1978)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Butnariu, D., Reich, S., Zaslavski, A.J.: Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces, Fixed Point Theory and Applications. Yokohama Publishers, Yokohama (2006)zbMATHGoogle Scholar
  10. 10.
    Conway, J.B.: Functions of one complex variable. Springer, New York (1978)CrossRefGoogle Scholar
  11. 11.
    Dhompongsa, S., Kirk, W.A., Sims, B.: Fixed points of uniformly lipschitzian mappings. Nonlinear Anal. 65, 762–772 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Espínola, R., Fernández-León, A.: CAT(\(\kappa \)) spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353, 410–427 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Marcel Dekker, New York and Basel (1984)zbMATHGoogle Scholar
  14. 14.
    Hundal, H.S.: An alternating projection that does not converge in norm. Nonlinear Anal. 57, 35–61 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differ. Equ. 2, 173–204 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689–3696 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kopecká, E., Reich, S.: Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball. Nonlinear Anal. 70, 3187–3194 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Matoušková, E., Reich, S.: The Hundal example revisited. J. Nonlinear Convex Anal. 4, 411–427 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pustylnik, E., Reich, S.: Infinite products of discontinuous operators. Contemp. Math. 636, 199–202 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pustylnik, E., Reich, S., Zaslavski, A.J.: Inexact orbits of nonexpansive mappings. Taiwan. J. Math. 12, 1511–1523 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pustylnik, E., Reich, S., Zaslavski, A.J.: Weak and strong convergence theorems for inexact orbits of uniformly Lipschitzian mappings. J. Nonlinear Convex Anal. 10, 359–367 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Reich, S.: A limit theorem for projections. Linear Multilinear Algebra 13, 281–290 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Reich, S.: The alternating algorithm of von Neumann in the Hilbert ball. Dyn. Syst. Appl. 2, 21–25 (1993)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Reich, S., Salinas, Z.: Infinite products of discontinuous operators in Banach and metric spaces. Linear Nonlinear Anal. (2015, accepted for publication)Google Scholar
  25. 25.
    Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537–558 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Department of MathematicsThe Technion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations