Webs invariant by rational maps on surfaces

Article

Abstract

We prove that under mild hypothesis rational maps on a surface preserving webs are Lattès-like. We classify endomorphisms of \(\mathbb {P}^2\) preserving webs, extending former results of Dabija-Jonsson.

Keywords

Rational maps Webs Lattès-like maps 

Mathematics Subject Classification

Primary 37F75 Secondary 14E05 32S65 

References

  1. 1.
    Berteloot, F., Dupont, C.: Une caractérisation des endomorphismes de Lattès par leur mesure de Green. Comment. Math. Helv. 80, 433–454 (2005)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Boucksom, S., Favre, C., Jonsson, M.: Degree growth of meromorphic surface maps. Duke Math. J. 141(3), 519–538 (2008)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Beauville, A.: Finite subgroups of \({{\rm PGL}}2(K)\). Vector bundles and complex geometry. Contemp. Math. Amer. Math. Soc. Providence RI, 522, 23–29 (2010)Google Scholar
  4. 4.
    Cantat, S., Favre, C.: Symétries birationnelles des surfaces feuilletées. J. Reine Angew. Math. 561, 199–235 (2003) [Corrigendum à l’article “Symétries birationnelles des surfaces feuilletées”. J. Reine Angew. Math. 582, 229–231 (2005)]Google Scholar
  5. 5.
    Carleson, L., Gamelin, T.W.: Complex dynamics, Universitext: Tracts in Mathematics. Springer, New York (1993)CrossRefGoogle Scholar
  6. 6.
    Cerveau, D., Lins-Neto, A.: Hypersurfaces exceptionnelles des endomorphismes de \(\mathbb{C}{\rm P}(n)\). Bol. Soc. Brasil. Mat. 31(2), 155–161 (2000)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dabija, M.: Algebraic and geometric dynamics in several complex variables. Ph.D. thesis. University of Michigan (2000)Google Scholar
  8. 8.
    Dabija, M., Jonsson, M.: Endomorphisms of the plane preserving a pencil of curves. Int. J. Math. 19(2), 217–221 (2008)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dabija, M., Jonsson, M.: Algebraic webs invariant under endomorphisms. Publ. Mat. 54, 137–148 (2010)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dinh, T.C.: Sur les endomorphismes polynomiaux permutables de \(\mathbb{C}^2\). Ann. Inst. Fourier 51, 431–459 (2001)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dinh, T.C., Nguyen, V.A.: Comparison of dynamical degrees for semi-conjugate meromorphic maps. Commentarii Math. Helv. 86(4), 817–840 (2011)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Dinh, T.C., Sibony, N.: Sur les endomorphismes permutables de \(\mathbb{P}^k\). Math. Ann. 324, 33–70 (2002)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dinh, T.C., Sibony, N.: Une borne supérieure pour l’entropie topologique d’une application rationnelle. Ann. Math. 161(3), 1637–1644 (2005)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Diller, J., Favre, C.: Dynamics of bimeromorphic maps of surfaces. Amer. J. Math. 123(6), 1135–1169 (2001)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Dupont, C.: Exemples de Lattès et domaines faiblement sphériques de \(\mathbb{C}^n\). Manuscripta Math. 111(3), 357–378 (2003)MATHMathSciNetGoogle Scholar
  16. 16.
    Favre, C., Pereira, J.V.: Foliations invariant by rational maps. Math. Zeitshrift 268, 753–770 (2011)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Fornaess, J.E., Sibony, N.: Complex analytic methods in dynamical systems (Rio de Janeiro, 1992). Astérisque 222(5), 201–231 (1994)Google Scholar
  18. 18.
    Gizatullin, M.H.: Rational \(G\)-surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 44(1), 110–144 (1980)MATHMathSciNetGoogle Scholar
  19. 19.
    Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. 49(3–4), 217–235 (2003)MATHMathSciNetGoogle Scholar
  20. 20.
    Harthorne, R.: Algebraic geometry. Graduate texts in Math., vol. 52. Springer (1977)Google Scholar
  21. 21.
    Hillman, J.A.: Four-manifolds, geometries and knots. Geometry & Topology Monographs, 5. Geometry & Topology Publications, Coventry (2002)Google Scholar
  22. 22.
    Kaneko, J., Tokunaga, S., Yoshida, M.: Complex crystallographic groups II. J. Math. Soc. Japan 34(4), 595–605 (1982)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lang, S.: Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer, New York (2002). xvi+914 ppGoogle Scholar
  24. 24.
    Marín, D., Pereira, J.V.: Rigid flat webs on the projective plane. Asian J. Math. 17(1), 163–192 (2013)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Milnor, J.: On Lattès maps. Dynamics on the Riemann sphere, Eur. Math. Soc. Zürich , 9–43 (2006)Google Scholar
  26. 26.
    Oda, T.: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 15. Springer, Berlin (1988) [viii+212 pp] Google Scholar
  27. 27.
    Pereira, J.V., Pirio, L.: An invitation to web geometry, 27\(^o\) Colóquio Brasileiro de Matemática. Instituto Nacional de Matemática Pura e Aplicada (IMPA). Rio de Janeiro (2009) [xii+245 pp] Google Scholar
  28. 28.
    Schlomiuk, D., Vulpe, N.: Planar quadratic vector fields with invariant lines of total multiplicity at least five. Qual. Theory Dyn. Syst. 5(1), 135–194 (2004)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Shiffman, B., Shishikura, M., Ueda, T.: On totally invariant varieties of holomorphic mappings of \(\mathbb{P}^n\) (Preprint) Google Scholar
  30. 30.
    Tokunaga, S., Yoshida, M.: Complex crystallograhic groups I. J. Math. Soc. Japan 34(4), 581–593 (1982)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Ueda, T.: Fatou set in complex dynamics in projective spaces. J. Math. Soc. Japan 46(3), 545–555 (1994)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Yoshihara, H.: Quotients of abelian surfaces. Publ. Res. Inst. Math. Sci. 31(1), 135–143 (1995)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Zariski, O., Samuel, P.: Commutative algebra. Vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc, Princeton (1960). x+414 ppGoogle Scholar
  34. 34.
    Zdunik, A.: Parabolic orbifolds and the dimension of the maximal measure for rational maps. Invent. Math. 99(3), 627–649 (1990)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.CNRS and Centre de Mathématiques Laurent Schwartz, École PolytechniquePalaiseau CedexFrance
  2. 2.IMPARio de JaneiroBrazil

Personalised recommendations