Advertisement

Design considerations for effective thermal management in mobile nanotweezers

  • Souvik GhoshEmail author
  • Ambarish GhoshEmail author
Research Paper
  • 4 Downloads

Abstract

Controlled manipulation of nanoscale objects in fluids is relevant to both fundamental studies and technological advances in nanotechnology. While standard techniques of nanomanipulation, such as optical and plasmonic tweezers have limitations in simultaneous trapping and transport of nanoscale cargo, magnetically driven plasmonic nanorobots under optical illumination provide a promising solution. These so called mobile nanotweezers (MNT) use strongly localized electromagnetic field near plasmonic nanostructures to trap objects with high efficiency and can simultaneously be driven by magnetic fields to selectively trap, transport and release colloidal cargo. Upon illumination, apart from strong optical gradient forces due to local electric field enhancement, additional fluidic forces arise due to the heat generated by absorption of light. Here, we present a method to understand and engineer thermally induced fluidic forces in mobile nanotweezers. The temperature enhancement and associated thermofluidic forces are studied as a function of MNT geometry. We also discuss illumination at wavelengths slightly detuned from plasmon resonance frequency, which produces sufficient field enhancement with negligible generation of heat, and therefore much reduced thermophoretic and convective forces. This allowed us to engineer thermoplasmonic forces in MNTs for enhanced trapping performance and diverse applications.

Keywords

Microrobots Plasmonic tweezer Optical nanomanipulation Cargo transport Plasmonic heating 

Notes

Acknowledgements

S.G thanks Arijit Ghosh, Debayan Dasgupta, Malay Pal, Praneet Prakash and Pranay Mandal for helpful discussions. We thank Department of Biotechnology, India for funding this research. We also acknowledge funding from MHRD, MeitY and DST Nano Mission for supporting the facilities at CeNSE.

Supplementary material

12213_2020_123_MOESM1_ESM.avi (2.7 mb)
ESM 1 (AVI 2733 kb)
12213_2020_123_MOESM2_ESM.avi (3 mb)
ESM 2 (AVI 3041 kb)

References

  1. 1.
    Wang J (2013) Nanomachines: fundamentals and applications. (John Wiley & Sons)Google Scholar
  2. 2.
    Petit T, Zhang L, Peyer KE, Kratochvil BE, Nelson BJ (2012) Selective trapping and manipulation of microscale objects using Mobile microvortices. Nano Lett 12:156–160CrossRefGoogle Scholar
  3. 3.
    Wang J (2012) Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab Chip 12:1944CrossRefGoogle Scholar
  4. 4.
    Li J, Esteban-Fernández de Ávila, B., Gao W, Zhang L & Wang J (2017) Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431Google Scholar
  5. 5.
    Ceylan H, Giltinan J, Kozielski K, Sitti M (2017) Mobile microrobots for bioengineering applications. Lab Chip 17:1705–1724CrossRefGoogle Scholar
  6. 6.
    Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic Motors for Transport of colloidal cargo. Nano Lett 8:1271–1276CrossRefGoogle Scholar
  7. 7.
    Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J (2008) Synthetic Nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J Am Chem Soc 130:8164–8165CrossRefGoogle Scholar
  8. 8.
    Huang TY, Sakar MS, Mao A, Petruska AJ, Qiu F, Chen XB, Kennedy S, Mooney D, Nelson B (2015) 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv Mater 27:6644–6650CrossRefGoogle Scholar
  9. 9.
    Huang T-Y et al (2014) Generating mobile fluidic traps for selective three-dimensional transport of microobjects. Appl Phys Lett 105:114102CrossRefGoogle Scholar
  10. 10.
    Zhou Q, Petit T, Choi H, Nelson BJ, Zhang L (2017) Dumbbell fluidic tweezers for dynamical trapping and selective transport of microobjects. Adv Funct Mater 27:1604571CrossRefGoogle Scholar
  11. 11.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288CrossRefGoogle Scholar
  12. 12.
    Huang TJ et al (2018) Acoustic tweezers for the life sciences. Nat Methods 15:1021–1028CrossRefGoogle Scholar
  13. 13.
    Righini M, Zelenina A & Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. 61–62.  https://doi.org/10.1109/OMEMS.2007.4373840
  14. 14.
    Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2:365–370CrossRefGoogle Scholar
  15. 15.
    Juan ML, Gordon R, Pang Y, Eftekhari F, Quidant R (2009) Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys 5:915–919CrossRefGoogle Scholar
  16. 16.
    Pang Y, Gordon R (2011) Optical trapping of a single protein. Nano Lett 12:6–10Google Scholar
  17. 17.
    Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245CrossRefGoogle Scholar
  18. 18.
    Mandal P, Patil G, Kakoty H, Ghosh A (2018) Magnetic active matter based on helical propulsion. Acc Chem Res 51:2689–2698CrossRefGoogle Scholar
  19. 19.
    Ghosh S, Ghosh A (2018) Mobile nanotweezers for active colloidal manipulation. Sci Robot 3:eaaq0076CrossRefGoogle Scholar
  20. 20.
    Baffou G, Quidant R, García de Abajo FJ (2010) Nanoscale control of optical heating in complex Plasmonic systems. ACS Nano 4:709–716CrossRefGoogle Scholar
  21. 21.
    Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev 7:171–187CrossRefGoogle Scholar
  22. 22.
    Piazza R (2004) Thermal forces : colloids in temperature gradients. J Phys Condens Matter 16:S4195–S4211CrossRefGoogle Scholar
  23. 23.
    Ghosh S, Ghosh A (2018) December. Photothermal effects in mobile nanotweezers. In 2018 4th IEEE International Conference on Emerging Electronics (ICEE) (pp. 1–4). IEEE.Google Scholar
  24. 24.
    Baffou G, Girard C, Quidant R (2010) Mapping heat origin in plasmonic structures. Phys Rev Lett 104:1–4CrossRefGoogle Scholar
  25. 25.
    Baffou G (2017) Thermoplasmonics. (World Scientific)Google Scholar
  26. 26.
    Piazza R, Parola A (2008) Thermophoresis in colloidal suspensions. J Phys Condens Matter 20:153102CrossRefGoogle Scholar
  27. 27.
    Guyon E (2001) Physical hydrodynamics. (Oxford University Press)Google Scholar
  28. 28.
    Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682CrossRefGoogle Scholar
  29. 29.
    Braibanti M, Vigolo D, Piazza R (2008) Does thermophoretic mobility depend on particle size? Phys Rev Lett 100:1–4CrossRefGoogle Scholar
  30. 30.
    Lin L et al (2017) Opto-thermophoretic assembly of colloidal matter. Sci Adv 3:e1700458CrossRefGoogle Scholar
  31. 31.
    Lin L, Peng X, Mao Z, Wei X, Xie C, Zheng Y (2017) Interfacial-entropy-driven thermophoretic tweezers. Lab Chip 17:3061–3070CrossRefGoogle Scholar
  32. 32.
    Venugopalan PL, Jain S, Shivashankar S, Ghosh A (2018) Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale 10:2327–2332CrossRefGoogle Scholar
  33. 33.
    Hawkeye MM, Brett MJ (2007) Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J Vac Sci Technol A Vacuum, Surfaces, Film 25:1317CrossRefGoogle Scholar
  34. 34.
    Schamel D, Pfeifer M, Gibbs JG, Miksch B, Mark AG, Fischer P (2013) Chiral colloidal molecules and observation of the propeller effect. J Am Chem Soc 135:12353–12359CrossRefGoogle Scholar
  35. 35.
    Ghosh A, Paria D, Rangarajan G, Ghosh A (2014) Velocity fluctuations in helical propulsion: how small can a propeller be. J Phys Chem Lett 5:62–68CrossRefGoogle Scholar
  36. 36.
    Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H (2013) Photo-induced heating of nanoparticle arrays photo-induced heating of nanoparticle arrays. ACS Nano 7:6478–6488CrossRefGoogle Scholar
  37. 37.
    Wright WH, Sonek GJ, Berns MW (1994) Parametric study of the forces on microspheres held by optical tweezers. Appl Opt 33:1735CrossRefGoogle Scholar
  38. 38.
    Dechant A (2019) Estimating the free-space diffusion coefficient of trapped particles. EPL 125Google Scholar
  39. 39.
    Ghosh S, Ghosh A (2019) All optical dynamic nanomanipulation with active colloidal tweezers. Nat Commun 10:4191CrossRefGoogle Scholar
  40. 40.
    Shoji T et al (2013) Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure. J Phys Chem C 117:2500–2506CrossRefGoogle Scholar
  41. 41.
    Ghosh A, Ghosh S (2019) Strategies for active colloidal manipulation with plasmonic tweezers (Conference Presentation). in Optical Trapping and Optical Micromanipulation XVI (eds. Dholakia, K. & Spalding, G. C.) 11083, 41 (SPIE)Google Scholar
  42. 42.
    Venugopalan PL et al (2014) Conformal Cytocompatible ferrite coatings facilitate the realization of a Nanovoyager in human blood. Nano Lett 14:1968–1975CrossRefGoogle Scholar
  43. 43.
    Pal M et al (2018) Maneuverability of magnetic Nanomotors inside living cells. Adv Mater 30:1800429CrossRefGoogle Scholar
  44. 44.
    Roxworthy BJ et al (2014) Plasmonic optical trapping in biologically relevant media. PLoS One 9:e93929CrossRefGoogle Scholar
  45. 45.
    Wang M, Zhao C, Miao X, Zhao Y, Rufo J, Liu YJ, Huang TJ, Zheng Y (2015) Plasmofluidics: merging light and fluids at the micro-/Nanoscale. Small 11:4423–4444CrossRefGoogle Scholar
  46. 46.
    Kayani AA, Khoshmanesh K, Ward SA, Mitchell A, Kalantar-zadeh K (2012) Optofluidics incorporating actively controlled micro- and nano-particles. Biomicrofluidics 6Google Scholar
  47. 47.
    Yan X et al (2017) Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2:eaaq1155CrossRefGoogle Scholar
  48. 48.
    Ghosh A et al (2018) Helical Nanomachines as Mobile viscometers. Adv Funct Mater 28:1705687CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Centre for Nano Science and EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations