Advertisement

Towards a real-time 3D vision-based micro-force sensing probe

  • Georges AdamEmail author
  • David J. Cappelleri
Research Paper
  • 23 Downloads

Abstract

This paper presents a vision-based micro-force sensing probe that is capable of μ N level force sensing in three dimensions. The sensor is mounted on a standard micromanipulation probe and can be easily integrated into many systems. It is low cost and reliable tool that can be specifically tailored for a desired application. Tests were conducted to demonstrate the accuracy of the system and to showcase some of its possible applications. An offline tracking algorithm was developed to evaluate the proposed technique. An online algorithm was developed that uses selective color tracking to allow for real-time micro-force feedback at speeds of up to 28 Hz. It is capable of achieving sub-μ N force resolution, with a range of 186 μ N and an average accuracy of 2.41% in real-time. Two case studies using the vision-based micro-force sensing probe were performed to demonstrate the efficacy of the system.

Keywords

Force sensing Micromanipulators Micro/nano robotics 

Notes

Acknowledgments

This work was supported by NSF NRI Award #1637961

References

  1. 1.
    Wei Y, Xu Q (2015) . Sensors Actuat A: Phys 234:359CrossRefGoogle Scholar
  2. 2.
    Beyeler F, Muntwyler S, Nagy Z, Muntwyler S, Beyeler F, Nelson BJ (2010) . J Micromech Microeng 20:8.  https://doi.org/10.1088/0960-1317/20/2/025011 CrossRefGoogle Scholar
  3. 3.
    Shkel Y, Ferrier N (2003) . IEEE/ASME Trans Mechatron 8:318.  https://doi.org/10.1109/TMECH.2003.816805 CrossRefGoogle Scholar
  4. 4.
    Ko JT, Tseng SH, Lu MSC (2006) . J Microelectromech Syst 15:1708.  https://doi.org/10.1109/JMEMS.2006.883569 CrossRefGoogle Scholar
  5. 5.
    Rakotondrabe M, Ivan IA (2011) . IEEE Trans Autom Sci Eng 8(4):824.  https://doi.org/10.1109/TASE.2011.2157683 CrossRefGoogle Scholar
  6. 6.
    Wang G, Xu Q (2017) . IEEE/ASME Trans Mechatron 22(4):1744.  https://doi.org/10.1109/TMECH.2017.2698139 CrossRefGoogle Scholar
  7. 7.
    Schulze R, Gessner T, Heinrich M, Schueller M, Forke R, Billep D, Sborikas M, Wegener M (2012) Proceedings of ISAF/ECAPD/PFM, pp 1–4.  https://doi.org/10.1109/ISAF.2012.6297771
  8. 8.
    Yiyang L, Peng Y, Yuechao W, Zaili D, Ning X (2008) Nano/Micro Engineered and Molecular Systems, pp 60–64.  https://doi.org/10.1109/NEMS.2008.4484286
  9. 9.
    Wei J, Porta M, Tichem M, Staufer U, Sarro PM (2013) . J Micoelectromech Syst 22:1310.  https://doi.org/10.1109/JMEMS.2013.2259142 CrossRefGoogle Scholar
  10. 10.
    Pfann WG, Thurston RN (1961) . J Appl Phys 32:2008.  https://doi.org/10.1063/1.1728280 CrossRefGoogle Scholar
  11. 11.
    Noda K, Hoshino K, Matsumoto K, Shimoyama I (2006) . Sensors Actuat A 127:295.  https://doi.org/10.1016/J.SNA.2005.09.023 CrossRefGoogle Scholar
  12. 12.
    Hoover A, Fearing R. (2007) In: Proc of IEEE international conference on robotics and automation (ICRA)Google Scholar
  13. 13.
    Engel J, Chen J, Liu C (2003) . J Micromech Microeng 13:359CrossRefGoogle Scholar
  14. 14.
    Efremov YM, Wang WH, Hardy SD, Geahlen RL, Raman A (2017) 7(1541).  https://doi.org/10.1038/s41598-017-01784-3, www.nature.com/scientificreports/
  15. 15.
    Guo S, Zhu X, Jańczewski D, Siew Chen Lee S, He T, Lay Ming Teo S, Julius Vancso G (2016) Nat Nanotechnol, 11.  https://doi.org/10.1038/NNANO.2016.118, www.nature.com/naturenanotechnology CrossRefGoogle Scholar
  16. 16.
    Puchner EM, Gaub HE (2009) . Curr Opin Struct Biol 19(5):605CrossRefGoogle Scholar
  17. 17.
    Ohka M, Mitsuya Y, Higashioka I, Kabeshite H (2005) . Robotica 23:493.  https://doi.org/10.1017/S0263574704001535 CrossRefGoogle Scholar
  18. 18.
    Yussof H, Ohka M, Kobayashi H, Takata J, Yamano M, Nasu Y (2007) Development of an optical three-axis tactile sensor for object handing tasks in humanoid robot navigation system. Springer, Berlin, pp 43–51Google Scholar
  19. 19.
  20. 20.
    Fujii Y, Maru K, Shu DW, Gu B, Yamaguchi T, Lu R, Jutanggoon T, Yupapin P (2009) . Physics Procedia 2:5.  https://doi.org/10.1016/j.phpro.2009.06.002. http://www.sciencedirect.comwww.elsevier.com/locate/procedia CrossRefGoogle Scholar
  21. 21.
    Hersen P, Ladoux B (2011) . Nature 470(7334):340CrossRefGoogle Scholar
  22. 22.
    Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N (2017) . Theranostics 7(14):3539.  https://doi.org/10.7150/thno.20593. http://www.thno.org CrossRefGoogle Scholar
  23. 23.
    Desai JP, Pillarisetti A, Brooks AD (2007) . Annu Rev Biomed Eng 9:35CrossRefGoogle Scholar
  24. 24.
    Bolopion A, Régnier S. (2013) . IEEE Trans Autom Sci Eng 10(3):496.  https://doi.org/10.1109/TASE.2013.2245122 CrossRefGoogle Scholar
  25. 25.
    Venkatesan V, Cappelleri DJ (2018) IEEE Robotics and Automation Letters.  https://doi.org/10.1109/LRA.2018.2849568 CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Greminger MA, Nelson BJ (2004) . IEEE Trans Pattern Anal Mach Intell 26(3):290CrossRefGoogle Scholar
  28. 28.
    Jing W, Chowdhury S, Guix M, Wang J, An Z, Johnson BV, Cappelleri DJ (2018) IEEE Transactions on Automation Science and Engineering, pp 1–13.  https://doi.org/10.1109/TASE.2018.2833810 CrossRefGoogle Scholar
  29. 29.
    Cappelleri DJ, Piazza G, Kumar V (2011) . Sensors Actuat: A Phys 171:340.  https://doi.org/10.1016/j.sna.2011.06.014 CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Guix M, Wang J, An Z, Adam G, Cappelleri DJ (2018) IEEE Robotics and Automation Letters.  https://doi.org/10.1109/LRA.2018.2854909 CrossRefGoogle Scholar
  32. 32.
    Lukežič A, Vojǐř T, Čehovin Zajc L, Matas J, Kristan M (2018) . Int J Comput Vis 126 (7):671.  https://doi.org/10.1007/s11263-017-1061-3 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Guix M, Orozco J, Garcia M, Gao W, Sattayasamitsathit S, Merkoči A, Escarpa A, Wang J (2012) ACS Nano.  https://doi.org/10.1021/nn301175b CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations