Advertisement

Thermocapillary micromanipulation: force characterization and Cheerios interactions

  • Ronald Terrazas
  • Adrien De Maeijer
  • Aude BolopionEmail author
  • Michaël Gauthier
  • Michel Kinnaert
  • Pierre Lambert
Research Paper
  • 32 Downloads

Abstract

Thermocapillary micromanipulation is an emerging non-contact micromanipulation technique, allowing to displace particles in the liquid bulk or at the free surface. When the particles are at the free surface and the surface is heated from the top, the actuation force is repulsive and not attractive. The handling technique is then intrinsically unstable. Therefore, control schemes have been reported recently to deal with this instability. They are based on an experimental characterization of the physical system (depending on the laser, the liquid and the particle properties). In this paper, we explain how we could make use of these handling schemes to estimate the thermocapillary force developed by the laser on the particle to be about 8 nN. This work is a first step towards the handling of multiple particles at the air/liquid interface.

Keywords

Thermocapillary micromanipulation Capillary forces Optofluidics Feedforward Capillary dipole Cheerios effect 

Notes

Acknowledgements

Supported by 7/38 MicroMAST IAP (Belspo, Belgium) and by the EIPHI Graduate School (contract “ANR-17-EURE-0002”).

References

  1. 1.
    Oulmas A, Andreff N, Régnier S (2017) 3D closed-loop motion control of swimmer with flexible flagella at low Reynolds numbers. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1877–1882Google Scholar
  2. 2.
    Gauthier V, Bolopion A, Gauthier M (2017) Analytical formulation of the electric field induced by electrode arrays: towards automated dielectrophoretic cell sorting. Micromachines 8(8):253CrossRefGoogle Scholar
  3. 3.
    Zhou Q, Sariola V, Latifi K, Liimatainen V (2016) Nat Commun 7:12764.  https://doi.org/10.1038/ncomms12764 CrossRefGoogle Scholar
  4. 4.
    Yin M, Gerena E, Pacoret C, Haliyo DS, Régnier S (2017) High-bandwidth 3D force feedback optical tweezers for interactive bio-manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1889–1894Google Scholar
  5. 5.
    Terrazas MR, Bolopion A, Beugnot J-C, Lambert P, Gauthier M (2017) 1D manipulation of a micrometer size particle actuated via thermocapillary convective flows. In: Intelligent Robots and Systems (IROS), pp 408–413Google Scholar
  6. 6.
    Vela E (2010) Non-contact microscale manipulation using laser-induced convection flows. Ph.D. thesis, Paris 6Google Scholar
  7. 7.
    Winterer F, Maier CM, Pernpeintner C, Lohmüller T (2018) Optofluidic transport and manipulation of plasmonic nanoparticles by thermocapillary convection. Soft Matter 14(4):628–634CrossRefGoogle Scholar
  8. 8.
    Vela E, Pacoret C, Bouchigny S, Regnier S, Rink K, Bergander A (2008) In: Intelligent Robots and Systems (IROS), pp. 913–918.  https://doi.org/10.1109/IROS.2008.4650918
  9. 9.
    Munoz E, Quispe J, Lambert P, Bolopion A, Terrazas R, Régnier S, Vela E (2017) Optimizing the speed of single infrared-laser-induced thermocapillary flows micromanipulation by using design of experiments. J Micro-Bio Robot 12:65–72CrossRefGoogle Scholar
  10. 10.
    Hu W, Fan Q, Ohta AT (2014) Robotics and Biomimetics 1(1):1.  https://doi.org/10.1186/s40638-014-0014-3 CrossRefGoogle Scholar
  11. 11.
    Hu W, Fan Q, Ohta AT (2013) Lab Chip 13(12):2285.  https://doi.org/10.1039/C3LC50389E CrossRefGoogle Scholar
  12. 12.
    Mallea RT (2017) Thermocapillary micromanipulation: laser induced convective flows towards controlled handling of particles at the free surface. Ph.D. thesis, Université libre de Bruxelles / Université de Franche-ComtéGoogle Scholar
  13. 13.
    Terrazas MR, Bolopion A, Beugnot J-C, Gauthier M, Lambert P (2017) Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface. IEEE/ASME Trans Mechatron 22(2):693–704CrossRefGoogle Scholar
  14. 14.
    Ng JMK, Fuerstman MJ, Grzybowski BA, Stone HA, Whitesides GM (2003) J Am Chem Soc 125(26):7948.  https://doi.org/10.1021/ja0347235. PMID: 12823016CrossRefGoogle Scholar
  15. 15.
    Jesacher A, Fürhapter S, Maurer C, Bernet S, Ritsch-Marte M (2006) Opt. Express 14(13):6342.  https://doi.org/10.1364/OE.14.006342. http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6342 CrossRefGoogle Scholar
  16. 16.
    Gupta S, Singh N, Sastry M, Kakkar R, Pasricha R (2010) Thin Solid Films 519(3):1072.  https://doi.org/10.1016/j.tsf.2010.08.046. http://www.sciencedirect.com/science/article/pii/S0040609010011612. Biomolecular Electronics and Organic Nanotechnology for Environmental PreservationCrossRefGoogle Scholar
  17. 17.
    Rogers P, Gralinski I, Galtry C, Neild A (2013) Microfluid Nanofluid 14(3-4):469.  https://doi.org/10.1007/s10404-012-1065-9 CrossRefGoogle Scholar
  18. 18.
    Dkhil M, Kharboutly M, Bolopion A, Regnier S, Gauthier M (2017) IEEE Trans Autom Sci Eng 14(3):1387.  https://doi.org/10.1109/TASE.2015.2448133 CrossRefGoogle Scholar
  19. 19.
    Terrazas MR, Bolopion A, Beugnot J-C, Gauthier M, Lambert P (2018) Closed-loop particle positioning control using laser-induced thermocapillary convective flows at the fluid/gas interface at micrometric scale. IEEE/ASME Trans Mechatron 23(4):8371646Google Scholar
  20. 20.
    Rahman MA, Takahashi N, Siliga KF, Ng NK, Wang Z, Ohta AT (2017) Vision-assisted micromanipulation using closed-loop actuation of multiple microrobots. Robot Biomimet 4(1):7CrossRefGoogle Scholar
  21. 21.
    Rahman MA, Wang Z, Ohta AT (2017) Collaborative micromanipulation using multiple bubble microrobots in an open reservoir. Micro Nano Lett 12(11):891–896CrossRefGoogle Scholar
  22. 22.
    Rahman MA, Cheng J, Wang Z, Ohta AT (2017) Cooperative micromanipulation using the independent actuation of fifty microrobots in parallel. Sci Rep 7(1):3278CrossRefGoogle Scholar
  23. 23.
    Terrazas MR, De Maeijer A, Bolopion A, Gauthier M, Kinnaert M, Lambert P (2018) Capillary dipoles: towards thermocapillary micromanipulation of multiple particles floating at the free surface. In: MARSS ConferenceGoogle Scholar
  24. 24.
  25. 25.
    Marmur A, Ras RHA (2011) Soft Matter 7:7382.  https://doi.org/10.1039/C1SM05156C CrossRefGoogle Scholar
  26. 26.
    Kralchevsky PA, Nagayama K (2001) Chapter 7 - Lateral Capillary Forces between Partially Immersed Bodies (Elsevier), Studies in Interface Science 10:287–350.  https://doi.org/10.1016/S1383-7303(01)80048-X Google Scholar
  27. 27.
    Flynn RA, Birkbeck AL, Gross M, Ozkan M, Shao B, Wang MM, Esener SC (2002) Parallel transport of biological cells using individually addressable {VCSEL} arrays as optical tweezers. Sens Actuators B Chem 87(2):239–243CrossRefGoogle Scholar
  28. 28.
    Chowdhury S, Švec P, Thakur A, Wang C, Losert W, Gupta SK (2013) Enhancing range of transport in optical tweezers assisted microfluidic chambers using automated stage motion. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p V001T09A031Google Scholar
  29. 29.
    Zhong MC, Wei XB, Zhou JH, Wang ZQ, Li YM (2013) Trapping red blood cells in living animals using optical tweezers. Nat Commun 4:1768CrossRefGoogle Scholar
  30. 30.
    Dorr A, Hardt S, Masoud H, Stone HA (2016) J Fluid Mech 790:607–618.  https://doi.org/10.1017/jfm.2016.41 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TIPs DptUniversité libre de BruxellesBrusselsBelgium
  2. 2.AS2M dpt, FEMTO-STBesançonFrance
  3. 3.SAAS DptUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations