Advertisement

An RSS-based method for path navigation in miniature robotic swarms

  • Georges El-HowayekEmail author
  • Adam Morrison
  • Sami Khorbotly
Research Paper
  • 24 Downloads

Abstract

Swarm robots are designed with very limited sensing and computing capabilities to reduce the robots’ cost without sacrificing their functionality. These limited capabilities make it necessary to develop algorithms and methodologies to enable the robots to perform tasks such as tracking, following, or even navigating a path. This paper addresses the particular problem of a robot navigating a path specified by stationary beacon robots. We suggest a method that combines the radio signal strength with trigonometry to achieve an effective path navigation methodology. The performance analysis shows that the robot travels on average (1.5N + 1) segments to complete a path lined up by N beacons as opposed to 2.5N segments when using the traditional tracking algorithm.

Keywords

Swarm robot Miniature robot Path navigation Robot tracking 

Supplementary material

(MP4 4.20 MB)

References

  1. 1.
    Batalin MA, Sukhatme GS, Hattig M (2004) Mobile robot navigation using a sensor network. In: International conference on robotics and automation, ICRA 2004.  https://doi.org/10.1109/ROBOT.2004.1307220, vol 1, pp 636–641
  2. 2.
    Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, OxfordzbMATHGoogle Scholar
  3. 3.
    Deshpande N, Grant E, Draelos M, Henderson TC (2014) Received signal strength based bearing-only robot navigation in a sensor network field. In: IEEE/RSJ international conference on intelligent robots and systems, 2014.  https://doi.org/10.1109/IROS.2014.6943217, pp 4618–4623
  4. 4.
    El-Howayek G, Morrison A, Khorbotly S An rss-based method for path navigation in miniature robotic swarms. https://youtu.be/61rPi9AtuEk
  5. 5.
    Grabowski R, Khosla P (2001) Localization techniques for a team of small robots. In: IEEE/RSJ international conference on intelligent robots and systems. Expanding the societal role of robotics in the the next millennium (2001).  https://doi.org/10.1109/IROS.2001.976310, vol 2, pp 1067–1072
  6. 6.
    Hoff N (2011) Multi-robot foraging for swarms of simple robots. Ph.D. thesis. https://ssr.seas.harvard.edu/files/ssr/files/phd11-hoff.pdf
  7. 7.
    Hoff NR, Sagoff A, Wood RJ, Nagpal R (2010) Two foraging algorithms for robot swarms using only local communication. In: IEEE international conference on robotics and biomimetics, pp 123–130.  https://doi.org/10.1109/ROBIO.2010.5723314
  8. 8.
    Hougen DF, Benjaafar S, Bonney JC, Budenske JR, Dvorak M, Gini M, French H, Krantz DG, Li PY, Malver F, Nelson B, Papanikolopoulos N, Rybski PE, Stoeter SA, Voyles R, Yesin KB (2000) A miniature robotic system for reconnaissance and surveillance. In: IEEE international conference on robotics and automation, ICRA 2000Google Scholar
  9. 9.
    Khorbotly S, El-Howayek G, Morrison A, Roggow A (2017) An rss-based triangulation method for robot tracking in robotic swarms. In: International conference on manipulation, automation and robotics at small scales (MARSS 2017), pp 1–5.  https://doi.org/10.1109/MARSS.2017.8001928
  10. 10.
    Kolling A, Walker P, Chakraborty N, Sycara K, Lewis M (2016) Human interaction with robot swarms: a survey. IEEE Transactions on Human-Machine Systems 46(1):9–26.  https://doi.org/10.1109/THMS.2015.2480801 CrossRefGoogle Scholar
  11. 11.
    Krentz T, Greenhagen C, Roggow A, Desmond D, Khorbotly S (2015) A modified ant colony optimization algorithm for implementation on multi-core robots. In: 2015 Swarm/human blended intelligence workshop (SHBI), pp 1–6.  https://doi.org/10.1109/SHBI.2015.7321683
  12. 12.
    Liu Y, HF, Chen J (2006) Multi-robot cooperation coalition formation based on genetic algorithm. In: 2006 international conference on machine learning and cybernetics, pp 85–88.  https://doi.org/10.1109/ICMLC.2006.258820
  13. 13.
    Mondada F, Bonani M, Raemy X, Pugh J, Cianci C, Klaptocz A, Magnenat S, Zufferey JC, Floreano D, Martinoli A (2009) The e-puck, a robot designed for education in engineering. In: Gonçalves P, Torres P, Alves C (eds) Proceedings of the 9th conference on autonomous robot systems and competitions, vol 1. IPCB:InstitutoPolitécnicodeCasteloBranco, PortugalGoogle Scholar
  14. 14.
    Mondada F, Pettinaro GC, Guignard A, Kwee IW, Floreano D, Deneubourg JL, Nolfi S, Gambardella LM, Dorigo M (2004) Swarm-bot: a new distributed robotic concept. Autonomous Robots 17(2):193–221.  https://doi.org/10.1023/B:AURO.0000033972.50769.1c CrossRefGoogle Scholar
  15. 15.
    Palanisamy P (2013) Efficient way of path planning and navigation for autonomous multi robot systems using an intelligent vision system. In: IEEE 8th international conference on industrial and information systems, 2013, pp 350–354.  https://doi.org/10.1109/ICIInfS.2013.6732008
  16. 16.
    Rubenstein M, Ahler C, Nagpal R (2012) Kilobot: a low cost scalable robot system for collective behaviors. In: IEEE international conference on robotics and automation, pp 3293–3298.  https://doi.org/10.1109/ICRA.2012.6224638
  17. 17.
    Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345(6198):795–799.  https://doi.org/10.1126/science.1254295. http://science.sciencemag.org/content/345/6198/795 CrossRefGoogle Scholar
  18. 18.
    Twigg JN, Fink JR, Yu PL, Sadler BM (2012) Rss gradient-assisted frontier exploration and radio source localization. In: IEEE international conference on robotics and automation, 2012, pp 889–895.  https://doi.org/10.1109/ICRA.2012.6225059
  19. 19.
    Wang Z, Li M, Dou L, Li Y, Zhao Q, Li J (2015) A novel multi-objective artificial bee colony algorithm for multi-robot path planning. In: 2015 IEEE international conference on information and automation, pp 481–486.  https://doi.org/10.1109/ICInfA.2015.7279336
  20. 20.
    Zhang Y, Zeng L, Li Y, Liu Q (2009) Multi-robot formation control using leader-follower for manet. In: IEEE international conference on robotics and biomimetics (ROBIO 2009), pp 337–342.  https://doi.org/10.1109/ROBIO.2009.5420668

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentValparaiso UniversityValparaisoUSA

Personalised recommendations