Advertisement

Multimodal microscopy test standard for scanning microwave, electron, force and optical microscopy

  • Olaf C. Haenssler
  • M. F. Wieghaus
  • A. Kostopoulos
  • G. Doundoulakis
  • E. Aperathitis
  • S. Fatikow
  • G. Kiriakidis
Research Paper
  • 33 Downloads

Abstract

We report on measurement results of a test standard suitable for different microscopic modalities. These findings were obtained by a multimodal hybrid microscope, which requires various calibration methods, also in terms of its further use as a tool in a nanorobotic environment. A Scanning Probe Microscopy (SPM)-Controller based on an FPGA (Field Programmable Gate Array) enables the submicrometer imaging for atomic force and microwave microscopic modalities. It is embedded in an open source software framework for nanorobotics and -automation and is described in this report.

Keywords

SMM SEM Control Robotics Micro capacitances Correlative microscopy Nanoautomation Visual servoing 

Notes

Acknowledgements

This research was supported in part by Deutscher Akademischer Austauschdienst (DAAD, Germany) and Greek State Scholarships Foundation (IKY, Greece) project “CalSAS” and by the French-German Agence Nationale de la recherché - Deutsche Forschungsgemeinschaft project “VACSMM” (GZ: FA347/48-1).

References

  1. 1.
    Fukuda T, Arai F, Nakajima M (2013) Micro-Nanorobotic manipulation systems and their applications. Springer, Berlin Heidelberg, pp 1–44CrossRefGoogle Scholar
  2. 2.
    Mick U, Eichhorn V, Wortmann T, Diederichs C, Fatikow S (2010) Combined nanorobotic AFM/SEM system as novel toolbox for automated hybrid analysis and manipulation of nanoscale objects. Proc. of Int Conf on Robotics and Automation, Anchorage, USA, p. 4088–4093, 3-8 May 2010Google Scholar
  3. 3.
    Banerjee A, Gupta S (2013) Research in automated planning and control for micromanipulation. IEEE Trans Autom Sci Eng 10(3):485–495CrossRefGoogle Scholar
  4. 4.
    Michel B, Mizutani W, Schierle R, Jarosch A, Knop W, Benedickter H, Bächtold W, Rohrer H (1992) Scanning surface harmonic microscopy: scanning probe microscopy based on microwave field-induced harmonic generation. Rev Sci Instrum 63(9):4080–4085CrossRefGoogle Scholar
  5. 5.
    Imtiaz A, Wallis TM, Kabos P (2014) Near-field scanning microwave microscopy: an emerging research tool for nanoscale metrology. IEEE Microw Mag 15(1):52–64CrossRefGoogle Scholar
  6. 6.
    Anderson G (2013) Scanning microwave microscopy for nanoscale electrical characterization. Microscopy Today 21(06):32–36CrossRefGoogle Scholar
  7. 7.
    Fabiani S, Mencarelli D, Di Donato A, Monti T, Venanzoni G, Morini A, Rozzi T, Farina M (2011) Broadband scanning microwave microscopy investigation of graphene. Proc. of Int Microwave Symposium, Baltimore, USA, p. 1–4, 05-10 08 2011Google Scholar
  8. 8.
    Wang F, Clément N, Ducatteau D, Troadec D, Tanbakuchi H, Legrand B, Dambrine G, Théron D (2014) Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope. Nanotechnology 25(40):405703CrossRefGoogle Scholar
  9. 9.
    Azizi M, Sarkar N, Mansour RR (2013) Single-Chip CMOS-MEMS dual mode scanning microwave microscope. IEEE Trans Microw Theory Tech 61(12):4621–4629CrossRefGoogle Scholar
  10. 10.
    Haenssler O (2014) Integration of a scanning microwave microscope and a scanning Electron microscope. Proc. of Int Conf on Manipulation, Manufacturing and Measurement on the Nanoscale, Taipei, Taiwan, p. 39–43, 27-31 Oct. 2014Google Scholar
  11. 11.
    Haenssler O, Kostopoulos A, Doundoulakis G, Aperathitis E, Fatikow S, Kiriakidis G (2017) Test standard for light, electron and microwave microscopy to enable robotic processes," Proc. of Int Conf on Manipulation, Automation and Robotics at Small Scales, Montréal, Canada, p. 1–5, 17-21 July 2017Google Scholar
  12. 12.
    Huebner U, Morgenroth W, Boucher R, Meyer M, Mirand W, Buhr E, Ehret G, Dai G, Dziomba T, Hild R, Fries T (2007) A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques. Meas Sci Technol 18(2):422–429CrossRefGoogle Scholar
  13. 13.
    SPI Supplies, West Chester, PA, USA, "MRS-6 Geller Magnification Reference Standard," [Online]. Available: http://www.2spi.com/item/z02782/geller-mrs-6. [Accessed 28 8 2017]
  14. 14.
    MC2 Technologies, Sainghin en Mélantois, France, "SMM Calibration Kit," [Online]. Available: http://www.mc2-technologies.com/smm-calibration-kit/. [Accessed 03 02 2017]
  15. 15.
    Huber HP, Moertelmaier M, Wallis TM, Chiang CJ, Hochleitner M, Imtiaz A, Oh Y, Schilcher K, Dieudonne M, Smoliner J, Hinterdorfer P, Rosner SJ, Tanbakuchi H, Kabos P, Kienberger a F (2010) Calibrated nanoscale capacitance measurements using a scanning microwave microscope. Rev Sci Instrum 81(11):113701-9–113701-113701Google Scholar
  16. 16.
    Hoffmann J, Wollensack M, Zeier M, Niegemann J, Huber H, Kienberger F (2012) A calibration algorithm for nearfield scanning microwave microscopes. Proc on 12th IEEE Conf on Nanotechnology, Birmingham, UK, p. 1–4Google Scholar
  17. 17.
    Karbassi A, Ruf D, Bettermann AD, Paulson CA, van der Weide DW, Tanbakuchi H, Stancliff R (2008) Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement. Rev Sci Instrum 79(9):5CrossRefGoogle Scholar
  18. 18.
    IMEC, Leuven, Belgium, "Calibration standards and test samples," [Online]. Available: http://www2.imec.be/be_en/services-and-solutions/cams/products/calibration-standards-and-test-s.html. [Accessed 03 02 2017]
  19. 19.
    Schweinböck T, Hommel S (2014) Quantitative scanning microwave microscopy: a calibration flow. Microelectron Reliab 54(9–10):2070–2074CrossRefGoogle Scholar
  20. 20.
    Gramse G, Kasper M, Fumagalli L, Gomila G, Hinterdorfer P, Kienberger F (2014) Calibrated complex impedance and permittivity measurements with scanning microwave microscopy. Nanotechnology 25(14):8CrossRefGoogle Scholar
  21. 21.
    Tiemerding T, Diederichs C, Stehno C, Fatikow S (2013) Comparison of different design methodologies of hardware-based image processing for automation in microrobotics. Proc. of Int Conf on Advanced Intelligent Mechatronics, Wollongong, Australia, p. 565–570, 9-12 July 2013Google Scholar
  22. 22.
    Wieghaus MF, Tiemerding T, Haenssler O, Fatikow S (2016) Modularized SPM-controller based on an FPGA for combined AFM and SMM measurements. Proc. of Int Conf on Manipulation, Automation and Robotics at Small Scales, Paris, France, p. 1–6, 18-22 07 2016Google Scholar
  23. 23.
    Diederichs C, Bartenwerfer M, Mikczinski M, Zimmermann S, Tiemerding T, Geldmann C, Nguyen H, Dahmen C, Fatikow D (2013) A rapid automation framework for applications on the micro- and nanoscale. in Proc. of the Australasian Conf. on Robotics and Automation (ACRA), Sydney, 2013Google Scholar
  24. 24.
    Bradski G (November 2000) The Opencv library. DDJ 25:120, 122–120, 125Google Scholar
  25. 25.
    Tiemerding T, Zimmermann S, Fatikow S (2014) Robotic dual probe setup for reliable pick and place processing on the nanoscale using haptic devices. Proc. of Int Conf on Intelligent Robots and Systems, Chicago, USA, p. 892–897, 14-18 Sept. 2014Google Scholar
  26. 26.
    Zimmermann S, Tiemerding T, Fatikow S, Wang W, Li T, Wang Y (2013) Automated mechanical characterization of 2D materials using SEM based visual servoing," Proc. of Int Conf on Manipulation, Manufacturing and Measurement on the Nanoscale,, Suzhou, China, p. 9–14, 26-30 Aug. 2013Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of OldenburgOldenburgGermany
  2. 2.Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS UMR 8520University of LilleVilleneuve d’AscqFrance
  3. 3.Foundation for Research and TechnologyInstitute of Electronic Structure & Laser (IESL)CreteGreece
  4. 4.University of CreteCreteGreece

Personalised recommendations