DNA translocation through solid-state nanopore

  • Xiaojing Zhao
  • Yue Zhao
  • Yunsheng Deng
  • Daming Zhou
  • Ziyin Zhang
  • Qimeng Huang
  • Deqiang Wang
Research Paper
  • 5 Downloads

Abstract

Solid-state nanopore is a promising alternative for current nucleic acid analysis in DNA sequencing. In this work, we employed current-stimulus dielectric breakdown to fabricate a 2 nm nanopore on SiNx membrane. The effect of this 2 nm SiNx nanopore was then examined by comparing the translocation behaviors of four types of ssDNA through this nanopore. Current signal collected from the nanopore can distinguish the four types of ssDNA with 30 nucleobases and 100 nucleobases, providinginformation about the sequence and structure of the ssDNA molecule.

Keywords

Solid-state nanopore Conical nanopore Dielectric breakdown DNA sequencing 

Notes

Acknowledgements

We acknowledge the support from the equipment scientific research projectof the Chinese Academy of Sciences (Grant NO.Y52A100K10), the National Nature Science Foundation of China (Grant NO. 61471336) and the Joint-Scholar of West-Light Foundation of the Chinese Academy of Sciences Awarded to Dr. Deqiang Wang. We also thank for other group members.

References

  1. 1.
    Wanunu M (2012) Nanopores: a journey towards DNA sequencing[J]. Phys Life Rev 9(2):125–158CrossRefGoogle Scholar
  2. 2.
    Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing.[J]. Nat Biotechnol 26(10):1146–1153CrossRefGoogle Scholar
  3. 3.
    Feng YX, Zhang YC, Ying CF et al (2015) Nanopore-based fourth-generation DNA sequencing technology[J]. Genomics, Proteomics & Bioinformatics 13(3):4–16CrossRefGoogle Scholar
  4. 4.
    Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing[J]. Nat Nanotechnol 4(4):265–270CrossRefGoogle Scholar
  5. 5.
    Laszlo AH, Derrington IM, Ross BC, Brinkerhoff H, Adey A, Nova IC, Craig JM, Langford KW, Samson JM, Daza R, Doering K, Shendure J, Gundlach JH (2014) Decoding long nanopore sequencing reads of natural DNA[J]. Nat Biotechnol 32(8):829–833CrossRefGoogle Scholar
  6. 6.
    He H, And RHS, Pandey R et al (2008) Functionalized nanopore-embedded electrodes for rapid DNA sequencing[J]. J Phys Chem C 112(10):3456–3459CrossRefGoogle Scholar
  7. 7.
    Heng JB, Aksimentiev A, Ho C, Marks P, Grinkova YV, Sligar S, Schulten K, Timp G (2006) The electromechanics of DNA in a synthetic nanopore.[J]. Biophys J 90(3):1098–1106CrossRefGoogle Scholar
  8. 8.
    Timp W, Mirsaidov UM, Wang D, Comer J, Aksimentiev A, Timp G (2010) Nanopore sequencing: electrical measurements of the code of life[J]. IEEE Trans Nanotechnol 9(3):281–294CrossRefGoogle Scholar
  9. 9.
    Dekker C (2007) Solid-state nanopores[J]. Nat Nanotechnol 2(4):209–215CrossRefGoogle Scholar
  10. 10.
    Wu MY, Krapf D, Zandbergen M et al (2005) Formation of nanopores in a SiN∕SiO[sub 2] membrane with an electron beam[J]. Appl Phys Lett 87(11):1895Google Scholar
  11. 11.
    Li J, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope.[J]. Nat Mater 2(9):611–615CrossRefGoogle Scholar
  12. 12.
    Storm AJ, Storm C, Chen J, Zandbergen H, Joanny JF, Dekker C (2005) Fast DNA translocation through a solid-state Nanopore. Nano Lett. 5(7), 1193-1197[J]. Nano Lett 5(7):1193–1197CrossRefGoogle Scholar
  13. 13.
    Deng Y, Huang Q, Zhao Y, et al. (2016) Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection[J]. Nanotechnology 28(4):045302 1-7Google Scholar
  14. 14.
    Menestrina J, Wanunu M et al (2015) Rectification properties of low aspect ratio TEM drilled Nanopores[J]. Biophys J 108(2):172aCrossRefGoogle Scholar
  15. 15.
    Sha J, Ni Z, Liu L, Yi H, Chen Y (2011) A novel method of fabricating a nanopore based on a glass tube for single-molecule detection [J]. Nanotechnology 22(22):175304CrossRefGoogle Scholar
  16. 16.
    Kwok H, Briggs K, Tabardcossa V (2014) Nanopore fabrication by controlled dielectric breakdown.[J]. PLoS One 9(3):e92880CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Zhou D, Wei H, et al. (2017) Solid-state nanopores fabricated by pulse-controlled dielectric breakdown[C]// IEEE international conference on manipulation, manufacturing and measurement on the nanoscale. IEEEGoogle Scholar
  18. 18.
    Ying C, Feng Y, Zhang Y, Zhou W, Hui W, Wang D, Tian J (2016) Stability of solid-state Nanopore fabricated by dielectric breakdown[J]. Biophys J 110(3):506a–506aCrossRefGoogle Scholar
  19. 19.
    Ying C, Zhang Y, Feng Y, Zhou D, Wang D, Xiang Y, Zhou W, Chen Y, du C, Tian J (2016) 3D nanopore shape control by current-stimulus dielectric breakdown[J]. Appl Phys Lett 109(6):063105CrossRefGoogle Scholar
  20. 20.
    Zhang B, Ai Y, Liu J, Joo SW, Qian S (2011) Polarization effect of a dielectric membrane on the ionic current rectification in a conical Nanopore[J]. J Phys Chem C 115(50):24951–24959CrossRefGoogle Scholar
  21. 21.
    Singh KP (2016) Ion current rectification influenced by length and location of surface charge in fluidic unipolar conical nanopores[J]. Sensors & Actuators B Chemical 230:493–500CrossRefGoogle Scholar
  22. 22.
    Cao L, Guo W, Wang Y, Jiang L (2012) Concentration-gradient-dependent ion current rectification in charged conical Nanopores[J]. Langmuir 28(4):2194–2199CrossRefGoogle Scholar
  23. 23.
    Ai Y, Liu J, Zhang B, Qian S (2011) Ionic current rectification in a conical nanofluidic field effect transistor[J]. Sensors & Actuators B Chemical 157(2):742–751CrossRefGoogle Scholar
  24. 24.
    Zhou DM, Deng YS, Ying CF et al (2016) Rectification of ion current determined by the Nanopore geometry: experiments and modelling[J]. Chin Phys Lett 10:158–162Google Scholar
  25. 25.
    Yusko EC, An R, Mayer M (2010) Electroosmotic flow can generate ion current rectification in nano- and micropores[J]. ACS Nano 4(1):477–487CrossRefGoogle Scholar
  26. 26.
    Feng J, Liu K, Bulushev RD, Khlybov S, Dumcenco D, Kis A, Radenovic A (2015) Identification of single nucleotides in MoS2 nanopores[J]. Nat Nanotechnol 10(12):1070–1076CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina

Personalised recommendations