Advertisement

Journal of Micro-Bio Robotics

, Volume 14, Issue 1–2, pp 1–16 | Cite as

Diamagnetically levitated Milli-robots for heterogeneous 3D assembly

  • Allen Hsu
  • William Chu
  • Cregg Cowan
  • Brian McCoy
  • Annjoe Wong-Foy
  • Ron Pelrine
  • Joseph Lake
  • Joshua Ballard
  • John Randall
Research Paper
  • 252 Downloads

Abstract

In this article, we demonstrate diamagnetically levitated milli-robots performing 3D heterogeneous micro-assembly of silicon micro-machined parts and polymer microspheres. Diamagnetically levitated milli-robots, in conjunction with controlled magnetic fields from printed circuit boards, can enable very precise, low cost, high density, and an easily scalable approach to massively parallel micro-assembly. By using an eddy-current dampening layer to suppress ambient external forces, we measured an open-loop in-plane equilibrium motion repeatability of 28.6 nm rms over cm’s of travel and a total vertical range of 50–70 μm. To perform micro-assembly, light-weight end effectors and force compatible micro-processes (i.e. micro-grasping and liquid handling) were integrated with the diamagnetic levitated milli-robots. Various tele-operated micro-assembly tasks were demonstrated such as joining polymer micro-spheres, interlocking silicon micro-parts, and printing electrical interconnects. Multiple specialized milli-robots, each taking up only 31 mm2, are used to perform each individual micro-task. In the future, by developing more sophisticated milli-robots and operating many more of these milli-robots in parallel, a dense, automated, rapid milli-robot assembly may be possible.

Keywords

Automation Diamagnetism Micro-assembly Micro-robots Pick and place 

Notes

Acknowledgments

The authors gratefully acknowledge funding support for this work from the Air Force Research Laboratory (AFRL) and the Defense Advanced Research Project Agency (DARPA) under AFRL Contract #FA8650-15-C-7547. The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. HF Vapor release and two-photon lithography was performed in part in the nano@Stanford labs, which are supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152.

References

  1. 1.
    ITRS 2.0 2015 Edition - IEEE Electronics Packaging Society. [Online]. Available: https://eps.ieee.org/itrs-2-0-2015-edition.html. Accessed 15 Oct 2017
  2. 2.
    Heidel ND, Usechak NG, Dohrman CL, Conway JA (2016) A review of electronic-photonic heterogeneous integration at DARPA. IEEE J Sel Top Quantum Electron 22(6):482–490CrossRefGoogle Scholar
  3. 3.
    Gardner DS, Schrom G, Paillet F, Jamieson B, Karnik T, Borkar S (2009) Review of on-Chip inductor structures with magnetic films. IEEE Trans Magn 45(10):4760–4766CrossRefGoogle Scholar
  4. 4.
    Mathúna CÓ, Wang N, Kulkarni S, Roy S (2012) Review of integrated magnetics for power supply on Chip (PwrSoC). IEEE Trans Power Electron 27(11):4799–4816CrossRefGoogle Scholar
  5. 5.
    Li L, Ton P, Nagar M, Chia P (2017) Reliability challenges in 2.5D and 3D IC integration. In: 2017 I.E. 67th Electronic Components and Technology Conference (ECTC), pp 1504–1509Google Scholar
  6. 6.
    Sarkar S, Chanclar GS, Shinde S (2005) Effective IP reuse for high quality SOC design. In: Proceedings 2005 I.E. international SOC conference, pp 217–224Google Scholar
  7. 7.
    Common Heterogeneous Integration and IP Reuse Strategies (CHIPS) - DARPA-BAA-16-62 (Archived) - Federal Business Opportunities: Opportunities. [Online]. Available: https://www.fbo.gov/index?s=opportunity&mode=form&id=026e9657dffcebcc6eee6cbbd9dd37e0&tab=core&_cview=1. Accessed 15 Oct 2017
  8. 8.
    Meitl MA, Zhu ZT, Kumar V, Lee KJ, Feng X, Huang YY, Adesida I, Nuzzo RG, Rogers JA (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5(1):33–38CrossRefGoogle Scholar
  9. 9.
    Kim S, Wu J, Carlson A, Jin SH, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan SL, Chen W, Ferreira PM, Sitti M, Huang Y, Rogers JA (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci 107(40):17095–17100CrossRefGoogle Scholar
  10. 10.
    Justice J, Bower C, Meitl M, Mooney MB, Gubbins MA, Corbett B (2012) Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat Photonics 6(9):610–614CrossRefGoogle Scholar
  11. 11.
    Chung H-J, Kim TI, Kim HS, Wells SA, Jo S, Ahmed N, Jung YH, Won SM, Bower CA, Rogers JA (2011) Fabrication of releasable single-crystal silicon–metal oxide field-effect devices and their deterministic assembly on foreign substrates. Adv Funct Mater 21(16):3029–3036CrossRefGoogle Scholar
  12. 12.
    Menard E, Lee KJ, Khang D-Y, Nuzzo RG, Rogers JA (2004) A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett 84(26):5398–5400CrossRefGoogle Scholar
  13. 13.
    H. Keum et al. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing. Sci. Rep. 6, p. srep29925; 2016Google Scholar
  14. 14.
    Wang W, Giltinan J, Zakharchenko S, Sitti M (2017) Dynamic and programmable self-assembly of micro-rafts at the air-water interface. Sci Adv 3(5):e1602522CrossRefGoogle Scholar
  15. 15.
    Boncheva M, Whitesides GM (2005) Making things by self-assembly. MRS Bull 30(10):736–742CrossRefGoogle Scholar
  16. 16.
    Terfort A, Bowden N, Whitesides GM (1997) Three-dimensional self-assembly of millimetre-scale components. Nature 386(6621):162–164CrossRefGoogle Scholar
  17. 17.
    Haghighat B, Mastrangeli M, Mermoud G, Schill F, Martinoli A (2016) Fluid-mediated stochastic self-assembly at centimetric and sub-millimetric scales: design, modeling, and control. Micromachines 7(8):138Google Scholar
  18. 18.
    Biswas S, Mozafari M, Stauden T, Jacobs HO (2016) Surface tension directed fluidic self-assembly of semiconductor chips across length scales and material boundaries. Micromachines 7(4):54Google Scholar
  19. 19.
    Mastrangeli M, Zhou Q, Sariola V, Lambert P (2017) Surface tension-driven self-alignment. Soft Matter 13(2):304–327CrossRefGoogle Scholar
  20. 20.
    Mastrangeli M, Abbasi S, Varel C, Hoof CV, Celis J-P, Böhringer KF (2009) Self-assembly from milli- to nanoscales: methods and applications. J Micromech Microeng 19(8):083001CrossRefGoogle Scholar
  21. 21.
    Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K, Rakotondrabe M, Tamadazte B (2013) Robotic microassembly and micromanipulation at FEMTO-ST. J Micro-Bio Robot 8(2):91–106CrossRefGoogle Scholar
  22. 22.
    Heriban D, Gauthier M (2008) Robotic micro-assembly of microparts using a piezogripper. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 4042–4047CrossRefGoogle Scholar
  23. 23.
    Zimmermann S, Tiemerding T, Fatikow S (2015) Automated robotic manipulation of individual colloidal particles using vision-based control. IEEE/ASME Trans Mechatron 20(5):2031–2038CrossRefGoogle Scholar
  24. 24.
    Cappelleri DJ, Fu Z (2013) Towards flexible, automated microassembly with caging micromanipulation. In: 2013 I.E. international conference on robotics and automation pp 1427–1432Google Scholar
  25. 25.
    Zhou Q, Chang B (2006) Microhandling using robotic manipulation and capillary self-alignment. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 5883–5888Google Scholar
  26. 26.
    Arai F, Ando D, Fukuda T, Nonoda Y, Oota T (1995) Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots 2:236–241Google Scholar
  27. 27.
    Arai F, Kawaji A, Luangjarmekom P, Fukuda T, Itoigawa K (2001) Three-dimensional bio-micromanipulation under the microscope. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (cat. No. 01CH37164) 1:604–609Google Scholar
  28. 28.
    Tanikawa T, Arai T, Hashimoto Y (1997) Development of vision system for two-fingered micro manipulation. In: Proceedings of the 1997 IEEE/RSJ international conference on intelligent robots and systems. IROS ‘97, 1997 2:1051–1056Google Scholar
  29. 29.
    Chu HK, Mills JK, Cleghorn WL (2012) Fabrication of a microcoil through parallel microassembly. In: 2012 I.E. international conference on robotics and automation, pp 5050–5055CrossRefGoogle Scholar
  30. 30.
    Cohn MB, Boehringer KF, Noworolski JM, Singh A, Keller CG, Goldberg KA, Howe RT (1998) Microassembly technologies for MEMS, vol 3511, pp 2–16Google Scholar
  31. 31.
    Fatikow S, Mounassypov R (1998) Microassembly planning for manufacturing by flexible microrobots. In: Proceedings 1998 I.E. international conference on robotics and automation (cat. No. 98CH36146) 4:3362–3367Google Scholar
  32. 32.
    Tamadazte B, Piat NLF, Dembélé S (2011) Robotic micromanipulation and microassembly using Monoview and multiscale visual Servoing. IEEE/ASME Trans Mechatron 16(2):277–287CrossRefGoogle Scholar
  33. 33.
    Nelson B, Zhou Y, Vikramaditya B (1998) Sensor-based microassembly of hybrid MEMS devices. IEEE Control Syst 18(6):35–45CrossRefGoogle Scholar
  34. 34.
    Woern H, Seyfried J, Fahlbusch S, Buerkle A, Schmoeckel F (2000) Flexible microrobots for micro assembly tasks. In: Proceedings of 2000 international symposium on micromechatronics and human science, 2000. MHS 2000, pp 135–143Google Scholar
  35. 35.
    Tasoglu S, Diller E, Guven S, Sitti M, Demirci U (2014) Untethered micro-robotic coding of three-dimensional material composition. Nat Commun 5:3124.  https://doi.org/10.1038/ncomms4124
  36. 36.
    Diller E, Pawashe C, Floyd S, Sitti M (2011) Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int J Robot Res 30(14):1667–1680CrossRefGoogle Scholar
  37. 37.
    Pawashe C, Floyd S, Diller E, Sitti M (2012) Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments. IEEE Trans Robot 28(2):467–477CrossRefGoogle Scholar
  38. 38.
    Floyd S, Diller E, Pawashe C, Sitti M (2011) Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int J Robot Res 30(13):1553–1565CrossRefGoogle Scholar
  39. 39.
    Elbuken C, Khamesee MB, Yavuz M (2009) Design and implementation of a micromanipulation system using a magnetically levitated MEMS robot. IEEE/ASME Trans Mechatron 14(4):434–445CrossRefGoogle Scholar
  40. 40.
    Pister KSJ, Fearing RS, Howe RT (1990) A planar air levitated electrostatic actuator system. In: IEEE proceedings on micro electro mechanical systems, an investigation of micro structures, sensors, actuators, machines and robots, pp 67–71Google Scholar
  41. 41.
    Pelrine R et al (2012) Diamagnetically levitated robots: an approach to massively parallel robotic systems with unusual motion properties. In: 2012 I.E. International Conference on Robotics and Automation (ICRA), pp 739–744Google Scholar
  42. 42.
    Pelrine R, Hsu A, Wong-Foy A, McCoy B, Cowan C (2016) Optimal control of diamagnetically levitated milli robots using automated search patterns. In: 2016 international conference on manipulation, automation and robotics at small scales (MARSS), pp 1–6Google Scholar
  43. 43.
    Hsu A et al (2017) Automated 2D micro-assembly using diamagnetically levitated milli-robots. In: 2017 international conference on manipulation, automation and robotics at small scales (MARSS), pp 1–6Google Scholar
  44. 44.
    Verma S, Kim W, Gu J (2004) Six-axis nanopositioning device with precision magnetic levitation technology. IEEE/ASME Trans Mechatron 9(2):384–391CrossRefGoogle Scholar
  45. 45.
    Ye XY, Huang Y, Zhou ZY, Li QC, Gong QL (1997) A magnetic levitation actuator for micro-assembly. In: 1997 international conference on solid state sensors and actuators. TRANSDUCERS ‘97 Chicago 2:797–799Google Scholar
  46. 46.
    Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mechatron 7(1):1–14CrossRefGoogle Scholar
  47. 47.
    Küstler G (2014) Diamagnetic levitation of pyrolytic graphite over monolithic NdFeB magnet. Electron Lett 50(18):1289–1290CrossRefGoogle Scholar
  48. 48.
    Pelrine RE (1990) Room temperature, open-loop levitation of microdevices using diamagnetic materials. In: Proceedings IEEE micro electro mechanical systems. investigation of micro structures, sensors, actuators, machines and robots, pp 34–37Google Scholar
  49. 49.
    Pelrine RE (2004) Diamagnetic Levitation: Known since the 1930s, a simple technique for suspending objects magnetically is just now finding practical application. Am Sci 92(5):428–435Google Scholar
  50. 50.
    Tkachenko A, Lu JJ-Q (2015) Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation. J Magn Magn Mater 385(Supplement C):286–291CrossRefGoogle Scholar
  51. 51.
    Feng L, Zhang S, Jiang Y, Zhang D, Arai F (2017) Microrobot with passive diamagnetic levitation for microparticle manipulations. J Appl Phys 122(24):243901CrossRefGoogle Scholar
  52. 52.
    Hsu A et al (2016) Application of micro-robots for building carbon fiber trusses. In: 2016 international conference on manipulation, automation and robotics at small scales (MARSS), pp 1–6Google Scholar
  53. 53.
    Griffiths DJ (1999) Introduction to electrodynamics. Prentice Hall, Upper Saddle RiverGoogle Scholar
  54. 54.
    Simon MD, Geim AK (2000) Diamagnetic levitation: flying frogs and floating magnets (invited). J Appl Phys 87(9):6200–6204CrossRefGoogle Scholar
  55. 55.
    Elbuken C, Khamesee MB, Yavuz M (2006) Eddy current damping for magnetic levitation: downscaling from macro- to micro-levitation. J Phys Appl Phys 39(18):3932–3938CrossRefGoogle Scholar
  56. 56.
    Elbuken C, Shameli E, Khamesee MB (2007) Modeling and analysis of Eddy-current damping for high-precision magnetic levitation of a small magnet. IEEE Trans Magn 43(1):26–32CrossRefGoogle Scholar
  57. 57.
    Nagaya K, Kojima H, Karube Y, Kibayashi H (1984) Braking forces and damping coefficients of eddy current brakes consisting of cylindrical magnets and plate conductors of arbitrary shape. IEEE Trans Magn 20(6):2136–2145CrossRefGoogle Scholar
  58. 58.
    Pao Y, Rentzepis PM (1965) Laser-induced production of free radicals in organic compounds. Appl Phys Lett 6(5):93–95CrossRefGoogle Scholar
  59. 59.
    Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3(7):444–447CrossRefGoogle Scholar
  60. 60.
    Specific stiffness - Specific strength. [Online]. Available: http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/spec-spec/NS6Chart.html. Accessed 13 Jan 2018
  61. 61.
    Sadeghian H, Bijnagte T, Herfst R, Kramer G, Kramer L, Dekker B (2017) Automated cantilever exchange and optical alignment for high-throughput parallel atomic force microscopy. IEEE/ASME Trans. Mechatron. 22(6):2654–2661CrossRefGoogle Scholar
  62. 62.
    Bartenwerfer M et al (2013) Design of a micro-cartridge system for the robotic assembly of exchangeable AFM-probe tips. In: 2013 I.E. international conference on robotics and automation, pp 1730–1735CrossRefGoogle Scholar
  63. 63.
    Sriramshankar R, Mrinalini RSM, Jayanth GR (2017) Design and fabrication of a flexural harmonic AFM probe with an exchangeable tip. J Micro-Bio Robot 13(1–4):39–53CrossRefGoogle Scholar
  64. 64.
    Clévy C, Hubert A, Chaillet N (2008) Flexible micro-assembly system equipped with an automated tool changer. J Micro-Nano Mechatron 4(1–2):59CrossRefGoogle Scholar
  65. 65.
    Basnar B, Willner I (2009) Dip-pen-Nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces. Small 5(1):28–44CrossRefGoogle Scholar
  66. 66.
    Hung S-C, Nafday OA, Haaheim JR, Ren F, Chi GC, Pearton SJ (2010) Dip pen nanolithography of conductive silver traces. J Phys Chem C 114(21):9672–9677CrossRefGoogle Scholar
  67. 67.
    Wang H-T, Nafday OA, Haaheim JR, Tevaarwerk E, Amro NA, Sanedrin RG, Chang CY, Ren F, Pearton SJ (2008) Toward conductive traces: dip pen nanolithography® of silver nanoparticle-based inks. Appl Phys Lett 93(14):143105CrossRefGoogle Scholar
  68. 68.
    “Material transport in dip-pen nanolithography | Springer for Research & Development,” (2017) [Online]. Available: http://rd.springer.com.sri.idm.oclc.org/article/10.1007/s11467-013-0381-1. Accessed 27 Jan 2017
  69. 69.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) ‘Dip-pen’ nanolithography. Science 283(5402):661–663CrossRefGoogle Scholar
  70. 70.
    Buffat P, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRefGoogle Scholar
  71. 71.
    Hirata S, Shigeta T, Aoyama H (2011) Basic study of high DOF micromanipulation by surface tension using the multi-needle-type capillary. In: 2011 I.E. international conference on Robotics and Biomimetics (ROBIO), pp 739–743Google Scholar
  72. 72.
    Hollar S, Flynn A, Bellew C, Pister KSJ (2003) Solar powered 10 mg silicon robot. In: IEEE the sixteenth annual international conference on micro electro mechanical systems. MEMS-03 Kyoto, pp 706–711Google Scholar
  73. 73.
    Hunter IW, Lafontaine S, Nielsen PMF, Hunter PJ, Hollerbach JM (1990) Manipulation and dynamic mechanical testing of microscopic objects using a tele-micro-robot system. IEEE Control Syst Mag 10(2):3–9CrossRefGoogle Scholar
  74. 74.
    SRI International. Magnetically actuated micro-robots for advanced manipulation applications. https://www.youtube.com/watch?v=uL6e3co4Qqc

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Technology and Systems DivisionSRI InternationalMenlo ParkUSA
  2. 2.Zyvex LabsRichardsonUSA

Personalised recommendations