Advertisement

Journal of Micro-Bio Robotics

, Volume 13, Issue 1–4, pp 15–26 | Cite as

Analysis of the influence of inertia for non-contact micromanipulation

  • Mohamed Dkhil
  • Aude Bolopion
  • Stéphane Régnier
  • Michaël Gauthier
Research Paper

Abstract

This article aims at analyzing the effect of the inertia of the objects in remotely actuated systems at the micrometer scale. As the size decreases inertia is commonly neglected and the systems are considered quasi-static. However, this article shows that for high velocities (around 8 mm/s) the dynamic behavior of the manipulated particle must be taken into account. To perform this analysis, a remotely magnetically actuated system dedicated to high speed manipulation is used. 60 μm-size particles placed at the air/liquid interface are actuated in 2D at different velocities. Precise trajectory tracking is obtained for velocities up to 2.8 mm/s (around 50 body lengths per second), for which inertia can be neglected. For faster velocities (more than 140 body lengths per second demonstrated in this paper) phase lag appears in trajectory tracking: inertia needs to be considered for the control. Experimental results are corroborated by numerical analysis of the model of the system. This article paves the way toward the control of future high speed remotely actuated systems at the micrometer scale.

Keywords

Inertia Non contact micromanipulation 2D trajectory control Magnetic actuation Air/liquid interface 

Notes

Acknowledgements

This work has been supported by the Labex ACTION project (contract “ANR-11-LABX-01-01”), by the ANR Multiflag project (contract “ANR-16-CE33-0019”), by the “Région Franche Comté” and by the French RENATECH network and its FEMTO-ST technological facility.

References

  1. 1.
    Kharboutly M, Gauthier M (2013) High speed closed loop control of a dielectrophoresis-based system IEEE International conference on robotics and automation, pp 1438–1443Google Scholar
  2. 2.
    Chowdhury S, Jing W, Cappelleri DJ (2015) Controlling multiple microrobots: recent progress and future challenges. Journal of Micro-Bio Robotics 10(1):1–11CrossRefGoogle Scholar
  3. 3.
    Cheng J, Rahman MA, Ohta AT (2017) Optical manipulation of cells Microtechnology for cell manipulation and sorting. Springer, pp 93–128Google Scholar
  4. 4.
    Zemanek J, Drs J, Hurak Z (2014) Dielectrophoretic actuation strategy for micromanipulation along complex trajectories IEEE/ASME International conference on advanced intelligent mechatronics, pp 19–25Google Scholar
  5. 5.
    Jiang C, Mills JK (2015) Planar cell orientation control system using a rotating electric field. IEEE/ASME Trans Mechatron 20(5):2350–2358CrossRefGoogle Scholar
  6. 6.
    (2014) Ultrasonic Micro/Nano Manipulations: Principles and Examples. Scientific Publishing CompanyGoogle Scholar
  7. 7.
    Zhou Q, Sariola V, Latifi K, Liimatainen V (2016) Controlling the motion of multiple objects on a Chladni plate. Nat Commun 7:12764CrossRefGoogle Scholar
  8. 8.
    Steager EB, Sakar MS, Magee C, Kennedy M, Cowley A, Kumar V (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32(3):346–359CrossRefGoogle Scholar
  9. 9.
    Khalil ISM, Ferreira P, Eleuterio R, de Korte CL, Misra S (2014) Magnetic-based closed-loop control of paramagnetic microparticles using ultrasound feedback IEEE International, conference on robotics and automation, pp 3807–3812Google Scholar
  10. 10.
    Giltinan J, Diller E, Sitti M (2016) Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper, Lab on a ChipGoogle Scholar
  11. 11.
    Thakur A, Chowdhury S, Svec P, Wang C, Losert W, Gupta SK (2014) Indirect pushing based automated micromanipulation of biological cells using optical tweezers. Int J Robot Res: 0278364914523690Google Scholar
  12. 12.
    Marino H, Bergeles C, Nelson BJ (2014) Robust electromagnetic control of microrobots under force and localization uncertainties. IEEE Trans Autom Sci Eng 11(1):310 –316CrossRefGoogle Scholar
  13. 13.
    Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103(2):205–224CrossRefGoogle Scholar
  14. 14.
    Bouchebout S, Bolopion A, Gauthier M, Régnier S (2014) Position control of a ferromagnetic micro-particle in a dry environment IEEE international conference on advanced intelligent mechatronicsGoogle Scholar
  15. 15.
    Piepmeier JA, Firebaugh S, Olsen CS (2014) Uncalibrated visual servo control of magnetically actuated microrobots in a fluid environment. Micromachines 5(4):797–813CrossRefGoogle Scholar
  16. 16.
    Ng JM, Fuerstman MJ, Grzybowski BA, Stone HA, Whitesides GM (2003) Self-assembly of gears at a fluid/air interface. J Am Chem Soc 125(26):7948–7958CrossRefGoogle Scholar
  17. 17.
    Jesacher A, Fürhapter S, Maurer C, Bernet S, Ritsch-Marte M (2006) Holographic optical tweezers for object manipulations at an air-liquid surface. Opt Express 14(13):6342–6352CrossRefGoogle Scholar
  18. 18.
    Dkhil M, kharboutly M, Bolopion A, Régnier S, Gauthier M (2015) Closed loop control of a magnetic particle at the air/liquid interface IEEE Transactions on automation science and engineering, pp 1–13Google Scholar
  19. 19.
    Khalil SMI, Kareem Y, Alonso S, Sarthak M (2014) Magnetic-based motion control of sperm-shaped microrobots using weak oscillating magnetic field IEEE international conference on intelligent robots and systemsGoogle Scholar
  20. 20.
    Salmon H, Couraud L, Hwang G (2013) Swimming property characterizations of magnetic polarizable microrobots IEEE international conference on robotics and automationGoogle Scholar
  21. 21.
    Zhang J, Onaizah O, Middleton K, You L, Diller E (2017) Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot. Autom. Lett. 2(2):835–840CrossRefGoogle Scholar
  22. 22.
    Dkhil M, Bolopion A, Régnier S, Gauthier M (2016) Modeling and 1d control of a non contact magnetic actuation platform at the air/liquid interface for micrometer scale applications International conference on manipulation automation and robotics at small scales, pp 1–6Google Scholar
  23. 23.
    Ivan A, Hwang G, Agnus J, Chaillet N, Régnier S. (2013) Nist micrororobotics challenge. magpier: the fastest mobile microrobots in the world. IEEE Robot Autom Mag 20(2):63–70CrossRefGoogle Scholar
  24. 24.
    Mulyokov K, Korznikov G, Abdulov R, Valiev R (1990) Magnetic hysteretic properties of submicron grained nickel and their variations upon annealing. J Magn Magn Mater 89(1-2):207– 213CrossRefGoogle Scholar
  25. 25.
    Ivan IA, Hwang G, Agnus J, Rakotondrabe M, Chaillet N, Ré gnier S (2011) First experiments on magpier: a planar wireless magnetic and piezoelectric microrobot IEEE International conference on robotics and automation, pp 102– 108Google Scholar
  26. 26.
    Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ (2010) Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res 29(5):613–636CrossRefGoogle Scholar
  27. 27.
    Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 28(8):1077–1094CrossRefGoogle Scholar
  28. 28.
    Barbot A, Dominique D, Gilgueng H (2014) Controllable roll-to-swim motion transition of helical nanoswimmers IEEE International conference on robotics and automationGoogle Scholar
  29. 29.
    Tung H-W, Peyer KE, Sargent DF, Nelson BJ (2013) Noncontact manipulation using a transversely magnetized rolling robot. Appl Phys Lett 103(11):114101CrossRefGoogle Scholar
  30. 30.
    Khalil IS, Magdanz V, Sanchez S, Schmidt OG, Misra S (2014) The control of self-propelled microjets inside a microchannel with time-varying flow rates. IEEE Trans Robot 30(1):49–58CrossRefGoogle Scholar
  31. 31.
    Keuning JD, de Vriesy J, Abelmanny L, Misra S (2011) Image-based magnetic control of paramagnetic microparticles in water IEEE International conference on intelligent robots and systems, pp 421–426Google Scholar
  32. 32.
    Schurle S, Peyer KE, Kratochvil B, Nelson BJ (2012) Holonomic 5-dof magnetic control of 1d nanostructures IEEE International conference on robotics and automation, pp 1081– 1086Google Scholar
  33. 33.
    Sakar MS, Steager EB, Cowley A, Kumar V, Pappas GJ (2011) Wireless manipulation of single cells using magnetic microtransporters IEEE International conference on robotics and automation, pp 2668–2673Google Scholar
  34. 34.
    Walter HU (2012) Fluid sciences and materials science in space: a European perspective. Springer Science & Business MediaGoogle Scholar
  35. 35.
    Clarke D, Mohtadi C, Tuffs P (1987) Generalized predictive control part i. the basic algorithm. Automatica 23(2):137 –148CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut FEMTO-STUniversité de Bourgogne Franche-Comté, CNRSBesançonFrance
  2. 2.Institut des Systèmes Intelligents et de RobotiqueUniversité Pierre et Marie Curie, CNRS UMR 7222ParisFrance

Personalised recommendations