Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot


We study the magnetic-based motion control of a sperm-flagella driven Micro-Bio-Robot (MBR), and demonstrate precise point-to-point closed-loop motion control under the influence of the controlled magnetic field lines. This MBR consists of a bovine spermatozoon that is captured inside Ti/Fe nanomembranes. The nanomembranes are rolled-up into a 50 μm long microtube with a diameter of 5-8 μm. Our MBR is self-propelled by the sperm cell and guided using the magnetic torque exerted on the magnetic dipole of its rolled-up microtube. The self-propulsion force provided by the sperm cell allows the MBR to move at an average velocity of 25 ±10 μm/s towards a reference position, whereas the magnetic dipole moment and the controlled weak magnetic fields (approximately 1.39 mT) allow for the localization of the MBR within the vicinity of reference positions with an average region-of-convergence of 90 ±40μm. In addition, we experimentally demonstrate the guided motion of the MBR towards a magnetic microparticle with applications towards targeted drug delivery and microactuation.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Purcell EM (1977) Am J Phys 45(1):3–11

  2. 2.

    Mallouk TE, Sen A (2009) Sci Am 300:72–77

  3. 3.

    Loget G, Kuhn A (2011) Nat Commun 2(535):1–6

  4. 4.

    Ghosh A, Fischer P (2009) Nano Lett 9(6):2243–2245

  5. 5.

    Peyer KE, Zhang L, Nelson BJ (2013) Nanoscale 5(4):1259– 1272

  6. 6.

    Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Nature 436(6):862–865

  7. 7.

    Zhang L, Petit T, Peyer KE, Nelson BJ (2012) Nanomed: Nanotechnol. Biol Med 8(7):1074–1080

  8. 8.

    Bell D J, Leutenegger S, Hammar KM, Dong LX, Nelson BJ (2007) In: Proceedings of the IEEE international conference in robotics and automation (ICRA). pp 1128–1133

  9. 9.

    Tottori S, Zhang L, Qiu F, Krawczyk K, Franco-Obregn A, Nelson B J (2012) Adv Mater 24(6):811–816

  10. 10.

    Wang J, Gao W (2012) ACS Nano 6(7):5745–5751

  11. 11.

    Magdanz V, Sanchez S, Schmidt OG (2013) Adv Mater 25(45):6581–6588

  12. 12.

    Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) Int J Robot Res 28(9):1169–1182

  13. 13.

    Khalil ISM, Pichel MP, Abelmann L, Misra S (2013) Int J Robot Res 32(6):637–649

  14. 14.

    Pan Y, Du X, Zhao F, Xu B (2012) Chem Soc Rev 41:2912–2942

  15. 15.

    Khlebtsov N, Dykman L (2011) Chem Soc Rev 40(3):1647–1671

  16. 16.

    Mei YF, Huang G, Solovev AA, Urena EB, Munch I, Ding F, Reindl T, Fu RKY, Chu PK, Schmidt OG (2008) Adv Mater 20(21):4085–4090

  17. 17.

    Bermudez Urena E, Mei YF, Coric E, Makarov D, Albrecht M, Schmidt OG (2009) Phys D: Appl Phys 42 (5)

  18. 18.

    Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Ann Rev Biomed Eng 12:55–85

  19. 19.

    Kummer MP, Abbott JJ, Kartochvil BE, Borer R, Sengul A, Nelson BJ (2010) IEEE Trans Robot 26(6):1006–1017

  20. 20.

    Xi W, Solovev AA, Ananth A, Gracias D, Sanchez S, Schmidt OG (2013) Nanoscale 5:1294–1297

  21. 21.

    Kagan D, Benchimal MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Angew Chem Int Ed 51:7519–7522

  22. 22.

    Solovev AA, Xi W, Gracias D, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) ACS Nano 6:1751

  23. 23.

    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) IEEE Trans Robot 30. doi:10.1109/TRO.2013.2281557

  24. 24.

    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) Appl Phys Lett 103:172404

  25. 25.

    Keuning JD, de Vries J, Abelmann L, Misra S (2011) In: Proceedings of the IEEE international conference of robotics and systems (IROS). pp 421–426

  26. 26.

    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) In: Proceedings of the IEEE international conference of robotics and systems (IROS). pp 2035–2040

  27. 27.

    Cummins JM, Woodall P F (1985) J Reprod Fert 75:153– 175

Download references


The authors acknowledge the funding from MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente. The research leading to these results has also received funding from the Volkswagen Foundation (# 86 362) and the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. 311529.

Author information

Correspondence to Islam S. M. Khalil.

Additional information

Islam S. M. Khalil and Veronika Magdanz equally contributed towards the preparation of this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(WMV 7.54 MB)

(WMV 7.54 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalil, I.S.M., Magdanz, V., Sanchez, S. et al. Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot. J Micro-Bio Robot 9, 79–86 (2014).

Download citation


  • Micro-bio-robot
  • Magnetic guidance
  • Sperm cells
  • Closed-loop
  • Motion control
  • Self-propulsion