Journal of Micro-Bio Robotics

, Volume 8, Issue 2, pp 91–106 | Cite as

Robotic microassembly and micromanipulation at FEMTO-ST

  • J. Agnus
  • N. Chaillet
  • C. Clévy
  • S. Dembélé
  • M. Gauthier
  • Y. Haddab
  • G. Laurent
  • P. Lutz
  • N. Piat
  • K. Rabenorosoa
  • M. Rakotondrabe
  • B. Tamadazte
Survey Paper


This paper deals with a historical overview of the activities of the French FEMTO-ST institute in the field of microrobotic manipulation and assembly. It firstly shows tools developed for fine and coarse positioning: 4 DOF microgrippers, 2 DOF modules and smart surfaces. The paper then goes on the automation of tridimensional microassembly of objects measuring between 10 and 400 microns. We are especially focusing on several principles. Closed loop control based on micro-vision has been studied and applied on the fully automatic assembly of several 400 microns objects. Force control has been also analyzed and is proposed for optical Microsystems assembly. At least, open loop trajectories of 40 microns objects with a throughput of 1,800 unit per hour have been achieved. Scientific and technological aspects and industrial relevance will be presented.


Microgrippers Microassembly Micromanipulation Microrobotic automation MEMS assembly 



These works have been supported by the French National Agency (ANR) under NANOROL contract ANR-07-ROBO-0003: Nanoanalyse for micromanipulate, PRONOMIA Contract ANR No. 05-BLAN-0325-01 and SMART BLOCKS contract ANR-2011-BS03-005, the European Union under EUPASS contract IST-NMP-1-507978-2: Evolvable Ultra Precision Assembly Systems: Next Generation Technologies for Rapid Deployment of Distributed Ultra Precision Assembly Services for Manufacture of Micro- and Nano-scale Products, HYDROMEL contract NMP2-CT-2006-026622: Hybrid ultra precision manufacturing process based on positional- and self-assembly for complex micro-products, FAB2ASM contract FoF.NMP.2012-3: Efficient and Precise 3D Integration of Heterogeneous Microsystems from Fabrication to Assembly, and by the Franche-Comté region under the MIAAMI and MIOP Projects and NEMO/Marie-Curie. Authors would like to thank C. Gorecki and S. Bargiel, from the MN2S Department of FEMTO-ST for their contribution on MOEMS assembly.


  1. 1.
    Abadie J, Piat E, Oster S, Boukallel M (2012) Modeling and experimentation of a passive low frequency nanoforce sensor based on diamagnetic levitation. Sens Actuators, A, Phys 173:227–237CrossRefGoogle Scholar
  2. 2.
    Agnus J, Nectoux P, Chaillet N (2005) Overview of microgrippers and design of a micromanipulation station based on MMOC microgripper. In: IEEE international symposium on computational intelligence in robotics and automation. CIRA, FinlandGoogle Scholar
  3. 3.
    Agnus J, Hériban D, Pétrini V, Gauthier M (2009) Silicon end-effectors for microgripping task. J Precis Eng. doi: 10.1016/j.precisioneng.2009.02.005 Google Scholar
  4. 4.
    Ammi M, Ferreira A (2004) Haptically generated paths of an AFM-based nanomanipulator using potential fields. In: Proceedings of the 2004 IEEE nano. Munich, GermanyGoogle Scholar
  5. 5.
    Bargiel S, Rabenorosoa K, Clévy C, Gorecki C, Lutz P (2010) Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench. J Micromechanics Microengineering (JMM) 20. doi: 10.1088/0960-1317/20/4/045012 Google Scholar
  6. 6.
    Bargiel S, Rabenorosoa K, Mascarob JP, Clévy C, Gorecki C, Lutz P (2010) Technology platform for hybrid integration of MOEMS on reconfigurable silicon micro-optical table. In: Eurosensors XXIV. Linz, AustriaGoogle Scholar
  7. 7.
    Bergander A, Driesen W, Varidel T, Breguet J (2003) Monolithic piezoelectric push-pull actuators for inertial drives. In: IEEE international symposium micromechatronics and human science, pp 309–316Google Scholar
  8. 8.
    Boudaoud M, Haddab Y, Gorrec YL (2012) Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Trans Mechatron 18(3):1130–1139Google Scholar
  9. 9.
    Chen Q, Haddab Y, Lutz P (2011) Microfabricated bistable module for digital microrobotics. J Micro-Nano Mechatron 6(1–2):1–12Google Scholar
  10. 10.
    Comport AI, Marchand E, Pressigout M, Chaumette F (2006) Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans Vis Comput Graph 12(4):615–628CrossRefGoogle Scholar
  11. 11.
    Dafflon M, Lorent B, Clavel R (2006) A micromanipulation setup for comparative tests of microgrippers. In: International symposium on robotics (ISR)Google Scholar
  12. 12.
    Dechev N, Mills JK, Cleghorn WL (2004) Mechanical fastener designs for use in the microassembly of 3d microstructures. In: Proceedings of ASME IMECE 2004Google Scholar
  13. 13.
    Dejeu J, Gauthier M, Rougeot P, Boireau W (2009) Adhesion forces controlled by chemical self-assembly and PH , application to robotic microhandling. ACS Appl Mater Interf 1(9):1966–1973CrossRefGoogle Scholar
  14. 14.
    Dejeu J, Rougeot P, Gauthier M, Boireau W (2009) Reduction of micro-object’s using chemical functionalisation. Micronanoletters 4(2):74–79Google Scholar
  15. 15.
    Dejeu J, Rougeot P, Gauthier M, Boireau W (2009) Robotic microhandling controlled by chemical self-assembly. In: Proc. of the IEEE/RSJ int. conf. on robotics and intelligent systems. St. Louis, Missouri, USAGoogle Scholar
  16. 16.
    Dejeu J, Benchelany M, Philippe L, Rougeot P, Michler J, Gauthier M (2010) Reducing the adhesion between surfaces using surface structuring with PS latex particle. ACS Appl Mater Interf 2(6):1630–1636CrossRefGoogle Scholar
  17. 17.
    Delettre A, Laurent G, LeFort-Piat NL (2010) 2-DOF contactless distributed manipulation using superposition of induced air flows. In: IROS2010—IEEE international conference on intelligent robots and systems, pp 2351–2356Google Scholar
  18. 18.
    Delettre A, Laurent GJ, Haddab Y, Fort-Piat NL (2012) Robust control of a planar manipulator for flexible and contactless handling. IFAC Int J Mechatron 22(6):852–861CrossRefGoogle Scholar
  19. 19.
    Delettre A, Laurent GJ, Haddab Y, Fort-Piat NL (2012) Robust control of a planar manipulator for flexible and contactless handling. Mechatronics. doi: 10.1016/j.mechatronics.2012.05.003 Google Scholar
  20. 20.
    Dembele S, Bert J, Tamadazte B, Lefort-Piat N (2010) A trifocal transfer based virtual microscope for robotic manipulation of MEMS components. J Optomechatron 4(4):342–361CrossRefGoogle Scholar
  21. 21.
    Dong W, Rostoucher D, Gauthier M (2010) A novel integrated micro-force measurement system for plane-plane contact research. Rev Sci Instrum 81:116101. doi: 10.1063/1.3488382 CrossRefGoogle Scholar
  22. 22.
    Figl M, Ede C, Hummel J, Wanschitz F, Ewers R, Bergmann H, Birkfellner W (2005) A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus. IEEE Trans Med Imag 24(11):1492–1499CrossRefGoogle Scholar
  23. 23.
    Gauthier M, Nourine M (2007) Capillary force disturbances on a partially submerged cylindrical micromanipulator. IEEE Trans Robot 23(3):600–604CrossRefGoogle Scholar
  24. 24.
    Gauthier M, Lopez-Walle B, Clévy C (2005) Comparison between micro-objects manipulations in dry and liquid mediums. In: Proc. of CIRA’05Google Scholar
  25. 25.
    Gauthier M, Régnier S, Rougeot P, Chaillet N (2006) Forces analysis for micromanipulations in dry and liquid media. J Micromechatron 3(3–4):389–413CrossRefGoogle Scholar
  26. 26.
    Gauthier JY, Hubert A, Abadie J, Chaillet N, Lexcellent C (2007) Original hybrid control for robotic structures using magnetic shape memory alloys actuators. In: IEEE IROS. San Diego, CA, pp 747–752Google Scholar
  27. 27.
    Grossard M, Boukallel M, Chaillet N, Rotinat-Libersa C (2011) Modeling and robust control strategy for a control-optimized piezoelectric microgripper. IEEE/ASME Trans Mechatron (T-Mech) 16(4):674–683CrossRefGoogle Scholar
  28. 28.
    Haliyo D, Régnier S (2002) Manipulation of micro-objects using adhesion forces and dynamical effects. In: Proceedings of ICRA/IEEE international conference on robotics and automationGoogle Scholar
  29. 29.
    Heriban D, Agnus J, Coudevylle JR, Gauthier M, Chaillet N (2005) Design of silicon finger tips for a MOC (microrobot on chip) microgripper. In: Proc. of the int. workshop on topica meeting on microfactories (TMMF05). Tsukuba, JapanGoogle Scholar
  30. 30.
    Hériban D, Agnus J, Pétrini V, Gauthier M (2009) Mechanical de-tethering technique for silicon MEMS etched with dried process. J Micromechanics Microengineering 19(5):055,011CrossRefGoogle Scholar
  31. 31.
    Ivan I, Rakotondrabe M, Lutz P, Chaillet N (2009) Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. Rev Sci Instrum (RSI) 80(12):2126,103Google Scholar
  32. 32.
    Ivan I, Rakotondrabe M, Lutz P, Chaillet N (2009) Quasi-static displacement self-sensing method for cantilevered piezoelectric actuators. Rev Sci Instrum (RSI) 80(12):065,102Google Scholar
  33. 33.
    Khadraoui S, Rakotondrabe M, Lutz P (2012) Interval modeling and robust control of piezoelectric microactuators. IEEE Trans Control Syst Technol (T-CST) 20(2):486–494CrossRefGoogle Scholar
  34. 34.
    Kharboutly M, Gauthier M, Chaillet N (2010) Predictive control of a micro bead’s trajectory in a dielectrophoresis-based device. In: IEEE IROSGoogle Scholar
  35. 35.
    Laurent G, Delettre A, Fort-Piat NL (2011) A new aerodynamic traction principle for handling products on an air cushion. IEEE Trans Robot 29(2):379–384CrossRefGoogle Scholar
  36. 36.
    Lit PD, Agnus J, Chaillet N (2003) The constitutive equations of a piezoelectric duo-bimorph. In: IEEE international symposium on assembly and task planning, pp 1–6Google Scholar
  37. 37.
    Lit PD, Agnus J, Clévy C, Chaillet N (2004) A four-degree-of-freedom microprehensile microrobot on chip. J Assem Autom 24(1):33–42CrossRefGoogle Scholar
  38. 38.
    Lopez-Walle B, Gauthier M, Chaillet N (2008) Principle of a submerged freeze gripper for micro-assembly. IEEE Trans Robot 24(4):897–902CrossRefGoogle Scholar
  39. 39.
    Rabenorosoa K, Clévy C, Lutz P, Gauthier M, Rougeot P (2009) Measurement of pull-off force for planar contact at the microscale. Micro Nano Lett 4:148–154CrossRefGoogle Scholar
  40. 40.
    Rabenorosoa K, Clévy C, Lutz P (2010) Hybrid force/position control applied to automated guiding tasks at the microscale. In: IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  41. 41.
    Rabenorosoa K, Clévy C, Lutz P (2010) Active force control for robotic micro-assembly: application to guiding tasks. In: IEEE ICRA, international conference on robotics and automationGoogle Scholar
  42. 42.
    Rabenorosoa K, Clévy C, Bargiel S, Mascaro JP, Lutz P, Gorecki C (2011) Modular and reconfigurable 3d micro-optical benches: concept, validation, and characterization. In: International manufacturing science & engineering conferenceGoogle Scholar
  43. 43.
    Rabenorosoa K, Clévy C, Chen Q, Lutz P (2012) Study of forces during micro-assembly tasks using two-sensing-finger grippers. IEEE/ASME Trans Mechatron. doi: 10.1109/TMECH.2011.2131673 Google Scholar
  44. 44.
    Rakotondrabe M, Gorrec YL (2010) Force control in piezoelectric microactuators using self scheduled HINF technique. In: IFAC—Mech (Symposium on mechatronic systems). Cambridge, MA, USA, pp 417–422Google Scholar
  45. 45.
    Rakotondrabe M, Haddab Y, Lutz P (2008) Voltage/frequency proportional control of stick-slip microsystems. IEEE Trans Control Syst Technol (T-CST) 16(6):1316–1322CrossRefGoogle Scholar
  46. 46.
    Rakotondrabe M, Haddab Y, Lutz P (2009) Development, modeling, and control of a micro-/nanopositioning 2-DOF stick–slip device. IEEE/ASME Trans Mechatron (T-mech) 14(6):733–745CrossRefGoogle Scholar
  47. 47.
    Rakotondrabe M, Haddab Y, Lutz P (2009) Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Trans Control Syst Technol (T-CST) 17(3):528–539CrossRefGoogle Scholar
  48. 48.
    Rakotondrabe M, Clévy C, Lutz P (2010) Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans Autom Sci Eng (T-ASE) 7(3):440–450CrossRefGoogle Scholar
  49. 49.
    Rakotondrabe M, Ivan I, Khadraoui S, Clévy C, Lutz P, Chaillet N (2010) Dynamic displacement self-sensing and robust control of cantilevered piezoelectric actuators dedicated to microassembly tasks. In: IEEE/ASME AIM (International conference on intelligent materials). Montreal, Canada, pp 557–562Google Scholar
  50. 50.
    Rakotondrabe M, Rabenorosoa K, Agnus J, Chaillet N (2011) Robust feedforward-feedback control of a nonlinear and oscillating 2-DOF piezocantilever. IEEE Trans Autom Sci Eng (T-ASE) 8(3):506–519CrossRefGoogle Scholar
  51. 51.
    Tamadazte B, Dembélé S, Fort-Piat NL (2008) A multiscale calibration of a photon video microscope for visual servo control: application to micromanipulation. In: ROSE 2008—IEEE international workshop on robotic and sensors environments, Ottawa, Canada, 17–18 OctoberGoogle Scholar
  52. 52.
    Tamadazte B, Dembele S, Lefort-Piat N (2009) A multicale calibration of a photon video microscope for visual servo control. Sens Transducers J 5:37–52Google Scholar
  53. 53.
    Tamadazte B, Marchand E, Dembele S, LeFort-Piat N (2010) Cad model based tracking and 3d visual-based control for MEMS microassembly. Int J Rob Res 29(11):1416–1437CrossRefGoogle Scholar
  54. 54.
    Zhou Y, Nelson BJ (1999) Calibration of a parametric model of an optical microscope. Opt Eng 38(12):1989–1995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Agnus
    • 1
  • N. Chaillet
    • 1
  • C. Clévy
    • 1
  • S. Dembélé
    • 1
  • M. Gauthier
    • 1
  • Y. Haddab
    • 1
  • G. Laurent
    • 1
  • P. Lutz
    • 1
  • N. Piat
    • 1
  • K. Rabenorosoa
    • 1
  • M. Rakotondrabe
    • 1
  • B. Tamadazte
    • 1
  1. 1.Automatic Control and Micro-Mechatronic Systems Department (AS2M)FEMTO-ST Institute, UMR CNRS 6174 - UFC/ENSMM/UTBMBesançonFrance

Personalised recommendations