Journal of Micro-Nano Mechatronics

, Volume 6, Issue 3–4, pp 65–87 | Cite as

Modeling of stick-slip micro-drives

Research Paper

Abstract

This paper describes substantial investigations on stick-slip micro drives. The drives are the basis for miniaturized micro- and nanohandling robots, which are usually driven by piezo-actuators. Because of the reason that stick-slip drives are strongly connected with friction characteristics of the stick-slip contact, this paper focuses on several aspects of friction and the model. After an introduction of former attempts to simulate stick-slip devices based on the so-called LuGre model, the CEIM friction model presented in this paper is based on the Elastoplastic-model. It is shown that one of the most significant phenomena, the “0-amplitude”, is covered by the original Elastoplastic-model without modifications. Furthermore, a theoretic treatment of friction characteristics is performed. The properties of the model are validated by simulations and numerous measurements. Additionally, several adaptations are presented to enhance the model’s capabilities. However, friction is a complex matter with manifold specificities. Thus, beside theoretic treatment, the center of gravity is also on “technical” issues to deliver not only an academic contribution to theory of friction, but to establish a tool for design and optimization of practical stick-slip positioners.

Keywords

Piezo Stick-slip Model Friction Simulation Elastoplastic Micro-drive 

References

  1. 1.
    Spanner K, Koc B (2010) An overview of piezoelectric motors. In: Actuator2010, 12th international conference on new actuators, Bremen, GermanyGoogle Scholar
  2. 2.
    Uchino K (2010) Piezoelectric actuators 2010, piezoelectric devices in the sustainable society. In: Actuator2010, 12th international conference on new actuators, Bremen, GermanyGoogle Scholar
  3. 3.
    Smaract Gmbh (2010) Floetenstrasse 70, 26125 Oldenburg, Germany. http://www.smaract.de
  4. 4.
    Attocube Systems AG (2010) Königinstrasse 11a RGB, 80539 München, Germany. http://www.attocube.com
  5. 5.
    Klocke Nanotechnik Gmbh (2010) Pascalstr. 17, 52076 Aachen, Germany. http://www.nanomotor.de/
  6. 6.
    Imina Technologies LLC (2010) Ch. de la Raye 13, CH – 1024 Ecublens, Switzerland. http://www.imina.ch/
  7. 7.
    Xidex Corporation (2010) 8906 Wall Street, Suite 703, Austin, Texas 78754. http://www.xidex.com/Xidex/Home.html
  8. 8.
    Edeler C, Jasper D, Diederichs C, Fatikow S (2010) Fast and accurate pick-and-place automation with nanorobots. In: Actuator2010, 12th international conference on new actuators, Bremen, GermanyGoogle Scholar
  9. 9.
    Zesch W, Buechi R, Codourey A, Siegwart RY (1995) Inertial drives for micro- and nanorobots: two novel mechanisms. In: Proc. SPIEGoogle Scholar
  10. 10.
    Munassypov R, Grossmann B, Magnussen B, Fatikow S (1996) Development and control of piezoelectric actuators for a mobile micromanipulation system. In: Actuator1996, 5th international conference on new actuators, Bremen, GermanyGoogle Scholar
  11. 11.
    Dooley JA, Lindensmith CA, Chave RG, Fultz B, Graetz J (1998) Cryogenic magnetostrictive actuators: materials and applications. In: Actuator1998, 6th international conference on new actuators, Bremen, GermanyGoogle Scholar
  12. 12.
    Breguet JM, Pérez R, Bergander A, Schmitt C, Clavel R, Bleuler H (2000) Piezoactuators for motion control from centimeter to nanometer. In: Proceedings of the 2000 IEEE/RS/international conference on intelligent robots and systemsGoogle Scholar
  13. 13.
    Martel S, Saraswat A, Hunter I (2000) Fundamentals of piezo-ceramic actuation for micrometer and sub-micrometer motions for the NanoWalker robot. In: SPIE2000Google Scholar
  14. 14.
    Wörn H, Schmoeckel F, Buerkle A, Samitier J, Puig-Vidal M, Johansson S, Simu U, Meyer JU, Biehl M (2001) From decimeter to centimeter-sized mobile microrobots. The development of the MINIMAN system. In: Conference on microrobotics and microassembly IIIGoogle Scholar
  15. 15.
    Burisch A, Soetebier S, Wrege J, Hesselbach J (2004) Piezoelectric stick-slip-actuator with normal-force-modulation. In: Actuator2004, 9th international conference on new actuators, Bremen, GermanyGoogle Scholar
  16. 16.
    Snis N, Simu U, Johansson S (2004) Piezoelectric drive platform for cm3-sized autonomous robot. In: Actuator2004, 9th international conference on new actuators, Bremen, GermanyGoogle Scholar
  17. 17.
    Bergander A, Driesen W, Varidel T, Breguet JM (2004) Monolithic piezoelectric actuators for miniature robotic systems. In: Actuator2004, 9th international conference on new actuators, Bremen, GermanyGoogle Scholar
  18. 18.
    Breguet JM, Johansson S, Driesen W, Simu U (2006) A review on actuation principles for few cubic millimeter sized mobile micro-robots. In: Actuator2006, 10th international conference on new actuators, Bremen, GermanyGoogle Scholar
  19. 19.
    Driesen W, Breguet JM, Clavel R (2006) Novel locomotion principles for mobile micro robots. In: Actuator2006, 10th international conference on new actuators, Bremen, GermanyGoogle Scholar
  20. 20.
    Floyd S, Pawashe C, Sitti M (2008) An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: IEEE international conference on robotics and automationGoogle Scholar
  21. 21.
    Jasper D, Edeler C (2008) Characterization, optimization and control of a mobile platform. In: International workshop on microfactories, IWMFGoogle Scholar
  22. 22.
    Edeler C (2011) Measurements and potential applications of force-control method for stick-slip-driven nanohandling robots (accepted). In: International conference on materials, mechatronics and automationGoogle Scholar
  23. 23.
    Murthy R, Popa DO (2009) A four degree of freedom microrobot with large work volume. In: IEEE international conference on robotics and automationGoogle Scholar
  24. 24.
    Peng JY, Chen DB (2010) Modeling of piezoelectric-driven stick–slip actuators. IEEE/ASME Trans Mechatron 99:1Google Scholar
  25. 25.
    Patrascu M, Stramigioli S (2007) Modeling and simulating the stick-slip motion of the μWalker, a MEMS-based device for μSPAM. Microsyst Technol 13(2):181–188CrossRefGoogle Scholar
  26. 26.
    Zesch W, Buechi R, Codourey A, Siegwart RY (1995) Inertial drives for micro- and nanorobots: analytical study. In: Proc. SPIEGoogle Scholar
  27. 27.
    Breguet JM (1998) Stick and slip actuators. PhD thesis, École Polytechnique Fédérale de Lausanne EPFL, SwitzerlandGoogle Scholar
  28. 28.
    Altpeter F (1999) Friction modeling, identification and compensation. PhD thesis, École Polytechnique Fédérale de Lausanne EPFL, SwitzerlandGoogle Scholar
  29. 29.
    Bergander A (2003) Control, wear and integration of stick-slip micropositioning. Thesis no 2843, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, SwitzerlandGoogle Scholar
  30. 30.
    Driesen W (2008) Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle. PhD thesis, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, SwitzerlandGoogle Scholar
  31. 31.
    de Wit CC, Olsson H, Astrom KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Automat Contr 40:419–425MATHCrossRefGoogle Scholar
  32. 32.
    Heslot F, Baumberger T, Perrin B, Caroli C (1994) Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys Rev E 49(6):4973–4988Google Scholar
  33. 33.
    Edeler C, Meyer I, Fatikow S (2010) Simulation and measurements of stick-slip-microdrives for nanorobots. In: European conference on mechanism science, EUCOMESGoogle Scholar
  34. 34.
    Edeler C, Fatikow S (2011) Open loop force control of piezo-actuated stick-slip drives. International journal on intelligent mechanisms and robots 1(1):1–19CrossRefGoogle Scholar
  35. 35.
    Popov VL (2009) Kontaktmechanik und Reibung (German). SpringerGoogle Scholar
  36. 36.
    Ogilvy JA (1991) Numerical simulation of friction between contacting rough surfaces. J Phys D, Appl Phys 24:2098–2109CrossRefGoogle Scholar
  37. 37.
    Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamic systems. J Dyn Syst Meas Control 107(1):100–103CrossRefGoogle Scholar
  38. 38.
    Mariotto G, D‘Angelo M, Shvets IV (1999) Dynamic behavior of a piezowalker, inertial and frictional configurations. Rev Sci Instrum 70:3651–3655CrossRefGoogle Scholar
  39. 39.
    Edeler C (2008) Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot. In: Proceedings of IEEE international conference on robotics and automationGoogle Scholar
  40. 40.
    Dupont P, Armstrong B, Hayward V (2000) Elasto-plastic friction model: contact compliance and stiction. In: Proceedings of the American control conference ChicagoGoogle Scholar
  41. 41.
    Dupont P, Hayward V, Armstrong B, Altpeter F (2002) Single state elastoplastic friction models. IEEE Trans Automat Contr 47:787–792MathSciNetCrossRefGoogle Scholar
  42. 42.
    Dahl PR (1968) A solid friction model. Tech. rep., Aerospace Corp el Segundo CAGoogle Scholar
  43. 43.
    Kogut L, Etsion I (2004) A static friction model for elastic-plastic contacting rough surfaces. Trans ASME 126:34–40Google Scholar
  44. 44.
    Chang WR, Etsion I, Bogy DB (1987) An elastic-plastic model for the contact of rough surfaces. J Tribol 109(2): 257–263CrossRefGoogle Scholar
  45. 45.
    Rabinowicz E (1958) The intrinsic variables affecting the stick-slip process. Proc Phys Soc 71(4):668CrossRefGoogle Scholar
  46. 46.
    Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430(29):525–528CrossRefGoogle Scholar
  47. 47.
    Persson BNJ (1993) Theory and simulation of sliding friction. Phys Rev Lett 71(8):1212–1215CrossRefGoogle Scholar
  48. 48.
    Bowden FP, Tabor D (1986) The friction and lubrication of solids. Clarendon Press, OxfordGoogle Scholar
  49. 49.
    Armstrong-Hélouvry B, Dupont P, de Wit C (1994) A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138MATHCrossRefGoogle Scholar
  50. 50.
    Yeh R, Pister KSJ (1995) Measurement of static friction in mechanical couplings of articulated microrobots. In: Symposium on micromachining and microfabricationGoogle Scholar
  51. 51.
    Dieterich JH (1978) Time-dependent friction and the mechanics of stick-slip. Pure Appl Geophys 116:790–806CrossRefGoogle Scholar
  52. 52.
    Piedboeuf JC, Carufel JD, Hurteau R (2000) Friction and stick-slip in robots: simulation and experimentation. Multibody Syst Dyn 4:341–354MATHCrossRefGoogle Scholar
  53. 53.
    Johnson KL, Woodhouse J (1998) Stick-slip motion in the atomic force microscope. Tribol Lett 5:155–160CrossRefGoogle Scholar
  54. 54.
    Bhushan B, Israelachvili JN, Landmann U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616CrossRefGoogle Scholar
  55. 55.
    Hertz H (1826) Über die Berührung fester elastischer Körper, (German). J Reine Angew Math 92:156–171Google Scholar
  56. 56.
    Hartikainen J, Kolar K, Kouhia R (2010) A constitutive model for strain-rate dependent ductile-to-brittle transition. In: 23rd nordic seminar on computational mechanicsGoogle Scholar
  57. 57.
    Durst K, Goken M (2004) Nanoindentierung - eine Sonde für die lokalen mechanischen Eigenschaften (German). Sonderbd Prakt Metallogr 36:319–328Google Scholar
  58. 58.
    Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond, A Math Phys Sci 295(1442):300–319CrossRefGoogle Scholar
  59. 59.
    Bergander A, Breguet JM (2003) Performance improvements for stick-slip positioners. In: Proc. int. symposium on micromechatronics and human science (MHS’03), Nagoya, Japan, pp 59–66Google Scholar
  60. 60.
    Singer NC, Seering WP (1988) Preshaping command inputs to reduce system vibration. Massachusetts Institute of Technology, Artificial Intelligence LaboratoryGoogle Scholar
  61. 61.
    Murphy BR, Watanabe I (1992) Digital shaping filters for reducing machine vibration. IEEE Trans Robot Autom 8(2):285–289CrossRefGoogle Scholar
  62. 62.
    Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268MathSciNetMATHGoogle Scholar
  63. 63.
    Landolsi F, Ghorbel FH, Lou J, Lu H, Sun Y (2009) Nanoscale friction dynamic modeling. J Dyn Syst Meas Control 131(6):061102CrossRefGoogle Scholar
  64. 64.
    PI Ceramic GmbH (2010) Lindenstraße, 07589 Lederhose, Germany. http://www.piceramic.de
  65. 65.
    Adriaens HJMTA, de Koning WL, Banning R (2000) Modeling piezoelectric actuators. IEEE Trans Mechatron 5(4):331–341CrossRefGoogle Scholar
  66. 66.
    Chonan S, Jiang Z, Yamamoto T (1996) Nonlinear hysteresis compensation of piezoelectric ceramic actuators. J Intell Mater Syst Struct 7(2):150–156CrossRefGoogle Scholar
  67. 67.
    Rabinowicz E (1995) Friction and wear of materials. WileyGoogle Scholar
  68. 68.
    Blok H (1955) The dissipation of frictional heat. Appl Sci Resource 5(Section A):151–181Google Scholar
  69. 69.
    Bowden FP, Freitag EH (1958) The friction of solids at very high speeds. Proc R Soc Lond, A Math Phys Sci 248(1254):350–367CrossRefGoogle Scholar
  70. 70.
    Budakian R, Putterman SJ (2000) Correlation between charge transfer and stick-slip friction at a metal-insulator interface. Phys Rev Lett 85(5):1000–1003CrossRefGoogle Scholar
  71. 71.
    Littmann W, Storck H, Wallaschek J (2001) Sliding friction in the presence of ultrasonic friction: superposition of longitudinal oscillations. Arch Appl Mech 71:549–554CrossRefGoogle Scholar
  72. 72.
    Lübke M (2010) Aufbau eines Reibkraftmessstandes und Durchführung von Messreihen (German). Student research project, University of OldenburgGoogle Scholar
  73. 73.
    Bowden FP, Tabor D (1949) The seizure of metals. Proc Inst Mech Eng 160:380–383CrossRefGoogle Scholar
  74. 74.
    Smith ST, Chetwynd DG (1992) Foundations of ultraprecision mechanism design. Gordon and Breach Science PublishersGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Division Microrobotics and Control EngineeringOldenburgGermany

Personalised recommendations