Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The role of primordial atmosphere composition in organic matter delivery to early Earth

  • 27 Accesses

Abstract

A model of the atmospheric entry of sub-mm grains is employed to evaluate the effect of the chemical composition of the primordial Earth’s atmosphere on the grain heating, in the context of organic matter delivery. Calculations are performed with spherical, uniform grains of forsterite/fayalite composition as well with the recently proposed white soft mineral (WSM) grains. Different hypotheses on primordial atmosphere composition affect the scale height and the energy transfer. The present work shows that: the total gas budget of the atmosphere is not highly relevant as far as the determination of the heating associated with slowing to subsonic speed is concerned; accordingly, light components (which are expected to be present in a primordial atmosphere and more abundant in the upper one) may be the primary ones in the evaluation of momentum and heat transfer in such scenarios. Strong reduced heating is obtained in the case of an upper atmosphere rich in light components, showing that the composition of the primordial Earth atmosphere may represent the key issue in the delivery of thermolabile organic matter enclosed in sub-mm extraterrestrial grains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Abelson PH (1966) Chemical events on the primitive earth. Proc Natl Acad Sci 55(6):1365–1372

  2. Anders E (1989) Pre-biotic organic matter from comets and asteroids. Nature 342(6247):255

  3. Aquilanti V, Maciel GS (2006) Observed molecular alignment in gaseous streams and possible chiral effects in vortices and in surface scattering. Orig Life Evol Biosph 36(5–6):435–441

  4. Aquilanti V, Grossi G, Lombardi A, Maciel GS, Palazzetti F (2008) The origin of chiral distrimination: supersonic molecular beam experiments and molecula dynamics simulations of collisional mechanism. Phys Scr 78(5):058119

  5. Aquilanti V, Grossi G, Lombardi A, Maciel GS, Palazzetti F (2011) Aligned molecular collisions and a stereodynamical mechanism for selective chirality. Rend Fis Acc Lincei 22(2):125

  6. Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34(5):357–360

  7. Benison KC, Karmanocky FJ III (2014) Could microorganisms be preserved in Mars gypsum? insights from terrestrial examples. Geology 42(7):615–618

  8. Bisceglia E, Micca Longo G, Longo S (2017) Thermal decomposition rate of \(\text{ MgCO }_3\) as an inorganic astrobiological matrix in meteorites. Int J Astrobiol 16(2):130–136

  9. Borg LE, Connelly JN, Nyquist LE, Shih CY, Wiesmann H, Reese Y (1999) The age of the carbonates in martian meteorite ALH84001. Science 286(5437):90–94

  10. Boynton WV, Ming DW, Kounaves SP, Young SMM, Arvidson RE, Hecht MH, Hoffman J, Niles PB, Hamara DK, Quinn RC et al (2009) Evidence for calcium carbonate at the Mars phoenix landing site. Science 325(5936):61–64

  11. Briani G, Pace E, Shore SN, Pupillo G, Passaro A, Aiello S (2013) Simulations of micrometeoroid interactions with the earth atmosphere. Astron Astrophys 552:A53

  12. Bruno D, Cacciatore M, Longo S, Rutigliano M (2000) Gas-surface scattering models for particle fluid dynamics: a comparison between analytical approximate models and molecular dynamics calculations. Chem Phys Lett 320(3–4):245–254

  13. Chandrasekhar S (2013) Radiative transfer. Courier Corporation, North Chelmsford

  14. Chyba CF, Thomas PJ, Brookshaw L, Sagan C (1990) Cometary delivery of organic molecules to the early earth. Science 249(4967):366–373

  15. Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38(2):105–115

  16. De Sanctis MC, Raponi A, Ammannito E, Ciarniello M, Toplis MJ, McSween HY, Castillo-Rogez JC, Ehlmann BL, Carrozzo FG, Marchi S et al (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature 536(7614):54

  17. Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE et al (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322(5909):1828–1832

  18. Ferus M et al (2017) Formation of nucleobasis in a Miller–Urey reducing atmosphere. Proc Natl Acad Sci 114(17):4306–4311

  19. Flynn GJ (1989) Atmospheric entry heating: a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77(2):287–300

  20. Flynn GJ (1989) Atmospheric entry heating of micrometeorites. Lunar Planet Sci Conf Proc 19:673–682

  21. Flynn G, Keller LP, Jacobsen C, Wirick S, Miller MA (2000) Organic carbon in interplanetary dust particles. Bioastronomy 99:213

  22. Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R et al (2005) Sulfates in Martian layered terrains: the Omega/Mars express view. Science 307:1587–1591

  23. Glavin DP, Bada JL (2001) Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology 1(3):259–269

  24. Gooding JL, Wentworth SJ, Zolensky ME (1988) Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite. Geochim Cosmochim Acta 52(4):909–915

  25. Haldane JBS (1929) Rationalist annual 148: 3; 1933. Science and human life

  26. Hart MH (1978) The evolution of the atmosphere of the Earth. Icarus 33(1):23–39

  27. Hayashi C, Nakazawa K, Mizuno H (1979) Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet Sci Lett 43(1):22–28

  28. Holland HD (1962) Model for the evolution of the earth’s atmosphere. Petrologic studies: a volume to honor AF Buddigington

  29. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

  30. Hua X, Buseck PR (1995) Fayalite in the Kaba and Mokoia carbonaceous chondrites. Geochim Cosmochim Acta 59(3):563–578

  31. Hua X, Huss GR, Tachibana S, Sharp TG (2005) Oxygen, silicon, and Mn-Cr isotopes of fayalite in the Kaba oxidized CV3 chondrite: constraints for its formation history. Geochim Cosmochim Acta 69(5):1333–1348

  32. Ikoma M, Genda H (2006) Constraints on the mass of a habitable planet with water of nebular origin. Astrophys J 648(1):696

  33. Jenniskens P, Wilson MA, Packan D, Laux CO, Kruger CH, Boyd ID, Popova O, Fonda M (2000) Meteors: a delivery mechanism of organic matter to the early Earth. In Leonid Storm Research, 57–70. Springer

  34. Jogo K, Nakamura T, Noguchi T, Zolotov MY (2009) Fayalite in the vigarano CV3 carbonaceous chondrite: occurrences, formation age and conditions. Earth Planet Sci Lett 287(3–4):320–328

  35. Kasting JF (1993) Earth’s early atmosphere. Science 259(5097):920–926

  36. Langevin Y, Poulet F, Bibring JP, Gondet B (2005) Sulfates in the north polar region of Mars detected by Omega/Mars express. Science 307(5715):1584–1586

  37. Lombardi A, Palazzetti F, Maciel GS, Aquilanti V, Sevryuk MB (2011) Simulation of oriented collision dynamics of simple chiral molecules. Int J Quantum Chem 111(7–8):1651–1658

  38. Lopez-Lozano NE, Eguiarte LE, Bonilla-Rosso G, GarcOliva F, Martinez-Piedragil C, Rooks C, Souza V (2012) Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Cienegas basin, Coahuila: a Mars analogue. Astrobiology 12(7):699–709

  39. Love SG, Brownlee DE (1991) Heating and thermal transformation of micrometeoroids entering the earth’s atmosphere. Icarus 89(1):26–43

  40. Matrajt G, Brownlee D, Sadilek M, Kruse L (2006) Survival of organic phases in porous IDPs during atmospheric entry: a pulse-heating study. Meteorit Planet Sci 41(6):903–911

  41. Matrajt G, Messenger S, Brownlee D, Joswiak D (2012) Diverse forms of primordial organic matter identified in interplanetary dust particles. Meteorit Planet Sci 47(4):525–549

  42. Maurette M (2006) Micrometeorites and the mysteries of our origins. Springer, Berlin

  43. Maurette M, Beccard B, Bonny PH, Brack A, Christophe M, Veyssiere P (1990) C-rich micrometeorites on the early Earth and icy planetary bodies. In ESA Special Publication, vol. 315

  44. McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273(5277):924–930

  45. Micca Longo G, Longo S (2017) Thermal decomposition of \(\text{ MgCO }_3\) during the atmospheric entry of micrometeoroids. Int J Astrobiol 16(4):368–378

  46. Micca Longo G, Longo S (2018) Theoretical analysis of the atmospheric entry of sub-mm meteoroids of \({\text{ Mg }}_{{x}} {\text{ Ca }}_{{(1-x)}} {\text{ CO }}_{{3}}\) composition. Icarus 310:194–202

  47. Micca Longo G, Piccinni V, Longo S (2019) Evaluation of \(\text{ CaSO }_4\) micrograins in the context of organic matter delivery: thermochemistry and atmospheric entry. Int J Astrobiol 18(4):345–352

  48. Micca Longo G, D’Elia M, Fonti S, Longo S, Mancarella F, Orofino V (2019) Kinetics of white soft minerals (WSMs) decomposition under conditions of interest for astrobiology: a theoretical and experimental study. Geosciences 9(2)

  49. Miller SL et al (1953) A production of amino acids under possible primitive Earth conditions. Science 117(3046):528–529

  50. Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77(9):2351–2361

  51. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth. Science 130(3370):245–251

  52. Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci 99:14628–14631

  53. Oparin AI (1924) Proischogdenie zhizni moscovsky: Robotchii

  54. Öpik EJ (2004) Physics of meteor flight in the atmosphere. Courier Corporation, North Chelmsford

  55. Palazzetti F, Tsai PY, Lombardi A, Nakamura M, Che DC, Kasai T, Aquilanti V (2013) Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics. Rend Fis Acc Lincei 24(3):299–308

  56. Palomba E, Zinzi A, Cloutis EA, D’Amore M, Grassi D, Maturilli A (2009) Evidence for Mg-rich carbonates on Mars from a 3.9 \(\mu\)m absorption feature. Icarus 203(1):58–65

  57. Pietrucci F, Saitta AM (2015) Formamide reaction network in gas phase and solution via a unified theoretical approach: toward a reconciliation of different brebiotic scenarios. Proc Natl Acad Sci 112(49):15030–15035

  58. Pirani F, Capitelli M, Colonna G, Laricchiuta A (2019) Transport cross sections from accurate intermolecular forces. Rend Fis Acc Lincei. Scienze Fisiche e Naturali 30(1):49–56

  59. Pizzarello S, Cooper GW, Flynn GJ (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteorit Early Solar Syst II 1:625–651

  60. Rezende MVC, Coutinho ND, Palazzetti F, Lombardi A, Carvalho-Silva VH (2019) Nucleophilic substitution vs elimination reaction of bisulfide ions with substituted methanes: exploration of chiral selectivity by stereodirectional first-principles dynamics and transition state theory. J Mol Model 25(8):227

  61. Rivkin AS, Volquardsen EL, Clark BE (2006) The surface composition of Ceres: discovery of carbonates and iron-rich clays. Icarus 185(2):563–567

  62. Saitta AM, Saija F (2014) Miller experiments in atomistic computer simulations. Proc Natl Acad Sci 111(38):13768–13773

  63. Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing \(\text{ CH }_4\), CO and \(\text{ CO }_2\). I. Amino acids. J Mol Evol 19:376–382

  64. Sekine Y, Sugita S, Kadono T, Matsui T (2003) Methane production by large iron meteorite impacts on early Earth. J Geophys Res 108:5070

  65. Steele IM (1986) Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites. Geochim Cosmochim Acta 50(7):1379–1395

  66. Su TM, Palazzetti F, Lombardi A, Grossi G, Aquilanti V (2013) Molecular alignment and chirality in gaseous streams and vortices. Rend Fis Acc Lincei 24(3):291–297

  67. Trainer MG (2013) Atmospheric prebiotic chemistry and organic hazes. Curr Org Chem 17(16):1710–1723

  68. Van Schmus WR, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31(5):747–765

  69. Wentworth SJ, Gooding JL (1994) Carbonates and sulfates in the Chassigny meteorite: further evidence for aqueous chemistry on the SNC parent planet. Meteoritics 29(6):860–863

  70. Wray JJ, Murchie SL, Bishop JL, Ehlmann BL, Milliken RE, Wilhelm MB, Seelos KD, Chojnacki M (2016) Orbital evidence for more widespread carbonate-bearing rocks on Mars. J Geophys Res Planets 121(4):652–677

  71. Zahnle K, Schaefer L, Fegley B (2010) Earth’s earliest atmospheres. Cold Spring Harbor perspectives in biology p. a004895

  72. Zanda B (2004) Chondrules. Earth Planet Sci Lett 224(1–2):1–17

Download references

Acknowledgements

This paper was partially supported by PON 2014–2020 within the project ”Close to the Earth”.

Author information

Correspondence to Savino Longo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is the peer-reviewed version of a presentation, at the Conference Statistical thermodynamics and chemical kinetics: far away from equilibrium held at the Accademia Nazionale dei Lincei in Rome, 25–26 June 2019. Program and abstracts at the link Statistical Thermodynamics and Chemical—Manifestazione|Accademia Nazionale dei Lincei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Micca Longo, G., Longo, S. The role of primordial atmosphere composition in organic matter delivery to early Earth. Rend. Fis. Acc. Lincei (2020). https://doi.org/10.1007/s12210-020-00878-x

Download citation

Keywords

  • Primordial atmospheres
  • Atmospheric entry
  • Energy transfer
  • Silicates
  • White soft minerals