Advertisement

Ten years of AGILE: the mission and scientific highlights

  • Marco TavaniEmail author
A Decade of AGILE
Part of the following topical collections:
  1. A Decade of AGILE: Results, Challenges and Prospects of Gamma-Ray Astrophysics

Abstract

We review the main features and scientific results obtained during the first 10 years of the AGILE space Mission, a scientific program of the Italian Space Agency (ASI) focused on high-energy astrophysics. The Mission was proposed in 1997 for the ASI “Small Mission” Program and the instrument has been developed with the programmatic and technical support of INAF and INFN. The AGILE satellite was launched on April 23, 2007, from the Indian base in Sriharikota. We describe first the characteristics of the instrument and of the satellite. AGILE is a very innovative space Mission for its class, and is capable of reaching an optimal scientific performance for the study of astrophysical sources with detectors operating in the energy ranges 20–60 keV, 400 keV–100 MeV, 50 MeV–30 GeV. We review the main scientific achievements of the Mission with contributions to the study of the most energetic Galactic and extragalactic sources including accreting compact objects (neutron stars and black holes), pulsars, Supernova Remnants, Active Galactic Nuclei (AGN). AGILE made several important discoveries: a novel mechanism of particle acceleration operating in the Crab Nebula, the emission of transient gamma rays at the moment of launching of relativistic jets from Galactic compact sources, the first evidence of hadronic cosmic ray production from Galactic sources, the emission of very powerful gamma-ray flares from accreting super-massive black holes in AGN, sudden spectral transitions in gamma-ray bursts. Furthermore, AGILE is now providing unique contributions for the study of gravitational wave source counterparts and cosmic neutrino emitters. Also terrestrial applications are relevant for the science program: AGILE discovered gamma-ray emission above 20 MeV from Terrestrial gamma-ray flashes produced by powerful lighting and thunderstorms. This discovery has an important impact for environmental and atmospheric studies. In addition, particle resonance effects and time-dependent precipitations in the lower Earth magnetosphere can by addressed by AGILE studying the charged particles detected by the instrument. The AGILE satellite is operating nominally, and continues to observe the sky searching for the most energetic phenomena of our Universe.

Keywords

Gamma rays: observations Gamma rays: theory 

Notes

Acknowledgements

The AGILE program has been developed over the years under the auspices of the Italian Space Agency with co-participation of the Italian Institute of Astrophysics (INAF) and of the Italian Institute of Nuclear Physics (INFN). Important support in the early phases of the project has been provided by CNR and ENEA. The scientific research carried out for the project has been partially supported under the grants ASI-I/R/045/04 and ASI-I/089/06/0,1,2 and subsequent grants. We acknowledge the crucial programmatic support of many colleagues in charge of Italian scientific institutions during two decades 1997–2017: the former ASI Scientific Director and ASI President G.F. Bignami, the former CNR President L. Bianco, the ASI Presidents S. De Julio, S. Vetrella, G. Bignami, E. Saggese, R. Battiston; the INAF Presidents P. Benvenuti, T. Maccacaro, G.F. Bignami, and N. D’Amico, and the INFN Presidents L. Maiani, R. Petronzio, F. Ferroni. We recognize the inspiration and enthusiasm of the late Giovanni (Nanni) Bignami who strongly supported the AGILE program over the years since its inception. Nanni is not with us anymore, but we hope that the AGILE work continues the tradition of Italian high-energy astrophysics at the highest level as he always wanted to pursue. A large number of scientists and engineers contributed to the success of the Mission in a substantial way at different stages of the project. We mention here the coordinators of the ASI Scientific Directorate S. Di Pippo and B. Negri, the AGILE Mission Directors of ASI L. Salotti, G. Valentini, F. D’Amico, the AGILE Team Program Manager A. Zambra, and the industry executive Directors L. Zucconi, M. Muscinelli, A. Beretta, R. Aceti, F. Longoni, R. Cordoni, R. Starec, and the managers G. Cafagna, B.L. Maltecca, and R. Terpin. A special recognition is for the AGILE CGS Program Manager, the late Paolo Sabatini, who contributed in a fundamental way to the success of the AGILE satellite development and early operations. We acknowledge the outstanding technical and management performance of the ISRO personnel during the AGILE launch campaign in India. Special thanks go to the ISRO Sriharikota base Director A. Nair and to the PSLV C-8 launch Director N. Narayanamoorthy and his very skilled team. Crucial support to the Mission has been provided by the AGILE Team Scientific Secretariat members who greatly contributed over the years: C. Mangili, B. Schena, E. Scalise, L. Siciliano, M. Giusti. A special recognition is for the unfailing support given to AGILE by the CIFS Director A. Ferrari and by the CIFS Scientific Secretariat (G. Ardizzoia). Updated documentation on the AGILE Mission can be found at the web sites http://www.ssdc.asi.it, and http://agile.iaps.inaf.it. The APP “AGILEScience” is publicly available for smartphones.

References

  1. Aartsen MG et al (2015) Phys Rev Lett 115:081102Google Scholar
  2. Aartsen MG et al (2018) Science 361:137Google Scholar
  3. Aartsen MG et al (2018) Science 361:147Google Scholar
  4. Abbott BP, Abbott R, Abbott TD et al (2017) ApJ 848:12Google Scholar
  5. Abbott BP, Abbott R, Abbott TD et al (2017) ApJ 848:13Google Scholar
  6. Abdo AA et al (2009) Nature 462:331Google Scholar
  7. Abdo AA et al (2010) ApJ 708:1254Google Scholar
  8. Abdo AA et al (2010) ApJ 708:1310Google Scholar
  9. Abdo AA et al (2010) Science 327:1103Google Scholar
  10. Abdo AA et al (2011) Science 331:739Google Scholar
  11. Abdo AA et al (2011) ApJ 734:28Google Scholar
  12. Ackermann M et al (2013) Science 339:807Google Scholar
  13. Ackermann M et al (2015) ApJL 813:41Google Scholar
  14. Ackermann M et al (2016) ApJ 824:20Google Scholar
  15. Aharonian FA et al (2004) Nature 432:75Google Scholar
  16. Aharonian FA et al (2006) ApJ 636:777Google Scholar
  17. Aleksic J et al (2010) ApJ 721:843Google Scholar
  18. Argan A et al (2004) IEEE Nucl Sci Symp Conf Rec 1:371.  https://doi.org/10.1109/NSSMIC.2008.4774628 CrossRefGoogle Scholar
  19. Argan A et al (2008) IEEE Nucl Sci Symp Conf Rec 774.  https://doi.org/10.1109/NSSMIC.2008.4774628
  20. Argan A, Piano G, Tavani M, Trois A (2016) J Geophys Res 121:3223Google Scholar
  21. Argan A, Tavani M (2019) these ProceedingsGoogle Scholar
  22. Arons J (2008) Pulsars: progress, problems and prospects. In: Becker W (ed) Neutron Stars and Pulsars, 40 years after the discovery. Springer, BerlinGoogle Scholar
  23. Atoyan AM, Aharonian FA (1996) MNRAS 278:525Google Scholar
  24. Baade W, Zwicky F (1934) PNAS 20:259Google Scholar
  25. Band D et al (1993) ApJ 413:281Google Scholar
  26. Bakaldin A, Morselli A, Picozza P et al (1997) Astrop Phys 8:109Google Scholar
  27. Barbiellini G et al (1995) Nucl Phys B 43:253Google Scholar
  28. Barbiellini G et al (1995) Nucl Instrum Methods 354:547Google Scholar
  29. Barbiellini G et al (2000) Proceedings of the 5th Compton Symposium, AIP Conf. Proceedings, ed. M. McConnell, Vol. 510, 750Google Scholar
  30. Barbiellini G et al (2002) NIM A 490:146Google Scholar
  31. Begelman MC, Kirk JC (1990) ApJ 353:66Google Scholar
  32. Bell AR (1978) MNRAS 182:147Google Scholar
  33. Bhat CL et al (1992) Nature 359:217Google Scholar
  34. Bignami GF, Fichtel CE, Kniffen DA et al (1975) ApJ 199:54Google Scholar
  35. Bignami GF, Hermsen W (1983) Annu Rev Astron Astrophys 21:67Google Scholar
  36. Blandford RD, Eichler D (1987) Phys Rep 154:1Google Scholar
  37. Blandford R, Ostriker JP (1978) ApJ 221:L29Google Scholar
  38. Blandford R, Buehler R (2017) Supernova of 1054 and its Remnant, the Crab Nebula. Springer International Publishing, Handbook of SupernovaeGoogle Scholar
  39. Bowers GS et al (2017) Geophys Res Lett 44:10063Google Scholar
  40. Briggs MS, Fishman GJ, Connaughton V et al (2010) J Geophys Res A 115:7323Google Scholar
  41. Buehler R et al (2010) Astron. Telegram no. 2861Google Scholar
  42. Buehler R et al (2011) Astron. Telegram 3276Google Scholar
  43. Buehler R et al (2012) ApJ 749:26Google Scholar
  44. Buehler R, Blandford R (2014) Rep Prog Phys 77:066901Google Scholar
  45. Bulgarelli A, Tavani M, Chen AW et al (2012) A&A 538:63Google Scholar
  46. Bulgarelli A, Trifoglio M, Gianotti F (2014) ApJ 781:19Google Scholar
  47. Bulgarelli A (2019) these ProceedingsGoogle Scholar
  48. Cardillo M, Tavani M, Giuliani A et al (2014) A&A 565:74Google Scholar
  49. Cardillo M, Amato E, Blasi P (2016) A&A 595:58Google Scholar
  50. Carlson BE, Lehtinen NG Inan US (2010) J Geophys Res 115:A00E19Google Scholar
  51. Cattaneo PW, Rappoldi A, Argan A et al. ApJ 861:125Google Scholar
  52. Cerutti B, Uzdensky DA, Begelman MC (2012) ApJ 746:148Google Scholar
  53. Cerutti B, Werner GR, Uzdensky DA, Begelman MC (2013) ApJ 770:147Google Scholar
  54. Corbel S et al (2012) MNRAS 421:2947Google Scholar
  55. Casandjian J-M, Grenier IA (2008) submitted. arXiv:0806.0113
  56. Cocco V, Longo F, Tavani M (2002) NIM A 486:623Google Scholar
  57. De Angelis A, Tatischeff V, Tavani M et al (2017) Exp Astron 44:25Google Scholar
  58. De Angelis A, Tatischeff V, Grenier IA et al (2018) J High Energy Astrophys 19:1Google Scholar
  59. de Jager OC, Harding AK (1992) ApJ 396:161Google Scholar
  60. de Jager OC et al (1996) ApJ 457:253Google Scholar
  61. Del Monte E et al (2007) NIM A 572:708Google Scholar
  62. Del Zanna L, Amato E, Bucciantini N (2004) A&A 421:1063Google Scholar
  63. Donnarumma I et al (2006) SPIE 6266:626636Google Scholar
  64. Donnarumma I et al (2008) Appl Opt 47:3513Google Scholar
  65. Donnarumma I, Pucella G, Vittorini V et al (2009) ApJ 707:1115Google Scholar
  66. Donnarumma I, De Rosa A, Vittorini V et al (2011) ApJ 736:30Google Scholar
  67. Drury LO (1983) Rep Prog Phys 46:973Google Scholar
  68. Drury LO (2012) Astroparticle Phys 39–40:52Google Scholar
  69. Dwyer JR, Smith DM (2005) Geophys Res Lett 32:L22804Google Scholar
  70. Enoto T, Wada Y, Furuta Y et al (2017) Nature 551:481Google Scholar
  71. Esposito JA, Hunter SD, Kanbach G, Sreekumar P (1996) ApJ 461:820Google Scholar
  72. Einstein A (1918) Koeniglich Preussische Akademie der Wissenschaften. Sitzungsberichte 1918:154Google Scholar
  73. Evangelista Y et al (2006) SPIE 6266:626635Google Scholar
  74. Evangelista Y, Costa E, Del Monte E et al (2008) SPIE, 7011:3BEGoogle Scholar
  75. Fermi E (1949) Phys Rev 75:1169Google Scholar
  76. Feroci M et al (2007) NIM A 581:728Google Scholar
  77. Feroci M et al (2008) SPIE (in press) Google Scholar
  78. Fichtel CE, Kniffen DA, Hartman RC (1973) ApJ 186:99Google Scholar
  79. Fichtel CE, Hartman RC, Kniffen DA, Thompson DJ, Bignami GF, Ogelman HB, Ozel ME, Turner T (1975) ApJ 198:163Google Scholar
  80. Fichtel CE, Trombka JI (1997) Gamma-Ray Astrophysics, NASA Reference Publication n. 1386Google Scholar
  81. Fishman GJ et al (1994) Science 264:1313Google Scholar
  82. Fuschino F et al (2008) NIM A 588:17Google Scholar
  83. Fuschino F et al (2011) Geophys Res Lett 38:L14806Google Scholar
  84. Ginzburg VL, Syrovatskii (1964) The origin of cosmic rays, transl. by H.S.H. Massey. Pergamon Press, OxfordGoogle Scholar
  85. Giuliani A, Tavani M, Bulgarelli A et al (2010) A&A 516:11Google Scholar
  86. Giuliani A, Cardillo M, Tavani M et al (2011) ApJ 742:L30Google Scholar
  87. Giuliani A, Fuschino F, Vianello G et al (2010) ApJ 708:84Google Scholar
  88. Hartman RC et al (1999) ApJS 123:279Google Scholar
  89. Halzen F (2017) Nat Phys 13:232Google Scholar
  90. Halpern JP, Camilo F, Giuliani A et al (2008) ApJ 688:33Google Scholar
  91. Hayashida M, Nalewajko K, Madejski GM et al (2015) ApJ 807:79Google Scholar
  92. Hays E et al (2011) Astron. Telegram 3284Google Scholar
  93. Hess VF (1912) Phys Zeit 13:1084Google Scholar
  94. Hester JJ, Scowen PA, Sankrit R et al (1995) ApJ 448:240Google Scholar
  95. Hester JJ (2008) Annu Rev Astron Astrophys 46:127Google Scholar
  96. Hjellming RM, Rupen MP (1995) Nature 375:464Google Scholar
  97. Hurley K et al (1994) Nature 372:652Google Scholar
  98. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New YorkGoogle Scholar
  99. Kennel CF, Coroniti FC (1984) ApJ 283:710Google Scholar
  100. Kirk GJ, Guthmann AW, Gallant YA, Achteberg A (2000) ApJ 542:235Google Scholar
  101. Koljonen K et al (2010) MNRAS 406:307Google Scholar
  102. Komissarov SS, Lyubarsky YE (2004) MNRAS 349:779Google Scholar
  103. Komissarov SS, Lyutikov M (2011) MNRAS 414:2017Google Scholar
  104. Krymskii GF (1977) Akad Nauk SSSR Doklady 234:1306Google Scholar
  105. Kraushaar WL et al (1972) ApJ 177:341Google Scholar
  106. Labanti C et al (2006) Proc SPIE 6266:62663Google Scholar
  107. Labanti C et al (2009) NIM A 598:470Google Scholar
  108. Landau LD, Lifshitz EM (1958) Classical theory of fields. Pergamon Press, OxfordGoogle Scholar
  109. LIGO/Virgo Collaboration press conference, NSF Washington, February 11, 2016. https://www.ligo.caltech.edu/WA/video/ligo20160211v12
  110. LIGO, Virgo Collaboration, Abbott BP et al (2016) Phys Rev Lett 116:061102Google Scholar
  111. LIGO/Virgo Collaboration, Abbott BP et al (2018) arXiv:181112907T
  112. Longo F, Cocco V, Tavani M (2002) NIM A 486:610Google Scholar
  113. Lucarelli F, Pittori C, Verrecchia F et al (2017) ApJ 846:121Google Scholar
  114. Lucarelli F, Tavani M, Piano G et al (2019) ApJ 870:136Google Scholar
  115. Marisaldi M et al (2008) GRB coordinates network 7457Google Scholar
  116. Marisaldi M, Labanti C, Fuschino F (2008) SPIE, 7011, 1PMGoogle Scholar
  117. Marisaldi et al (2008) A&A 490:1151Google Scholar
  118. Marisaldi M, Fuschino F, Labanti C et al (2010) J Geophys Res A 115:E13Google Scholar
  119. Marisaldi M et al (2010) Phys Rev Lett 105:128501Google Scholar
  120. Marisaldi M, Argan A, Ursi A et al (2015) Geophys Res Lett 42:9481Google Scholar
  121. Mayer-Hasselwander et al (1979) Annals of the New York Academy of Sciences. Proc Ninth Texas Symp 226:211Google Scholar
  122. McCollough ML, Corrales L, Dunham MM (2016) ApJ 830:36Google Scholar
  123. Meyer M, Horns D, Zechlin HS (2010) A&A 523:A2Google Scholar
  124. Mignone A, Striani E, Tavani M, Ferrari A (2013) MNRAS 436:1102Google Scholar
  125. Mioduszewski AJ et al (2001) ApJ 553:766Google Scholar
  126. Mirabel F (2012) Science 335:175Google Scholar
  127. Pacini D (1912) Nuovo Cimento 3:93Google Scholar
  128. Pacciani L, Vittorini V, Tavani M et al (2010) ApJ 716:170Google Scholar
  129. Pagani C et al (2008) GRB coordinates network 7442Google Scholar
  130. Pellizzoni A, Pilia M, Possenti A et al (2009) ApJ 691:1618Google Scholar
  131. Pellizzoni A, Pilia M, Possenti A et al (2009) ApJ 695:115Google Scholar
  132. Pellizzoni A, Trois A, Tavani M et al (2010) Science 327:663Google Scholar
  133. Perotti F et al (2006) NIM A 556:228Google Scholar
  134. Piano G, Tavani M, Vittorini V et al (2012) A&A 545:110Google Scholar
  135. Piran T (2004) Rev Mod Phys 76:1143Google Scholar
  136. Pittori C et al (2009) A&A 506:1563Google Scholar
  137. Pittori C, Lucarelli F, Verrecchia F et al (2018) ApJ 856:99Google Scholar
  138. Prest M et al (2003) NIM A 501:280Google Scholar
  139. Raiteri C, Villata M, Chen AW et al (2008) A&A 485:17Google Scholar
  140. Romero GE et al (2003) A&A 410:L1Google Scholar
  141. Sabatini S, Donnarumma I, Tavani M et al (2015) ApJ 809:60Google Scholar
  142. Sahakyan N, Piano G, Tavani M (2014) ApJ 780:29Google Scholar
  143. Schneid EJ et al (1996) AIP Conf Proc 384:253Google Scholar
  144. Shulz M, Lanzerotti LJ (1974) Particle diffusion in the radiation belts. Springer, New YorkGoogle Scholar
  145. Shah GN, Razdan H, Bhat CL, Ali QM (1985) Nature 313:773Google Scholar
  146. Shyam A, Kaushik TC (1999) J Geophys Res 104:6867Google Scholar
  147. Striani E et al (2011) Astron. Telegram 3286Google Scholar
  148. Striani M et al (2011) ApJL 741:5Google Scholar
  149. Striani M et al (2013) Astrophys J 765:52Google Scholar
  150. Striani E, Vercellone S, Tavani M et al (2010) ApJ 718:455Google Scholar
  151. Sturner SJ, Dermer CD (1995) A&A 293:17Google Scholar
  152. Swanenburg BN et al (1981) ApJ 242:L69Google Scholar
  153. Tatischeff V, De Angelis A, Tavani M et al (2019) arXiv:190507806
  154. Tavani M et al (1997) ApJ 479:L109Google Scholar
  155. Tavani M, Barbiellini G, Caraveo P, Di Pippo S, Longo M, Mereghetti S, Morselli A, Pellizzoni A, Picozza P, Severoni S, Tavecchio F, Vercellone S (1998) AGILE Phase A ReportGoogle Scholar
  156. Tavani M et al (2000) Proceedings of the 5th Compton Symposium. In: McConnell M (ed) AIP Conf. Proceedings, vol 510, p 746Google Scholar
  157. Tavani M (2003) Texas in Tuscany, XXI Symposium on Relativistic Astrophysics, Florence, Italy, 9–13 December 2002, p 183Google Scholar
  158. Tavani M et al (2008a) NIM A 588:52Google Scholar
  159. Tavani M, Barbiellini G, Argan A et al (2009) A&A 502Google Scholar
  160. Tavani M et al (2009) Nature 462:620Google Scholar
  161. Tavani M et al (2010) ApJ 710:L151Google Scholar
  162. Tavani M et al (2010) Astron. Telegram 2855Google Scholar
  163. Tavani M et al (2011) Science 331:736Google Scholar
  164. Tavani M et al (2011) Astron. Telegram 3282:995Google Scholar
  165. Tavani M, Marisaldi M, Labanti C et al (2011) Phys Rev Lett 106:8501Google Scholar
  166. Tavani M (2013) Nucl Phys B 243:131Google Scholar
  167. Tavani M et al (2013) Nat Hazards Earth Syst Sci 13:1127Google Scholar
  168. Tavani M, Vittorini V, Cavaliere A (2015) ApJ 814:51Google Scholar
  169. Tavani M, Pittori C, Verrecchia F et al (2016) ApJ 825:4Google Scholar
  170. Tavani M, Tatischeff V et al (2015) ASTROGAM, Proposal for the ESA M4 Mission Program, January 15, 2015Google Scholar
  171. Thompson DJ, Bignami GF, Fichtel CE et al (1974) ApJ 190:51Google Scholar
  172. Thompson DJ, Fichtel CE, Hartman RC et al (1977) ApJ 213:252Google Scholar
  173. Thompson DJ et al (1993) ApJS 86:629Google Scholar
  174. Thompson DJ et al (1995) ApJS 101:259Google Scholar
  175. Thompson DJ et al (1996) ApJS 107:227Google Scholar
  176. Thompson DJ et al (1998) Proc. 4th CGRO Symp., AIP Conf. Ser. n. 410, p 39Google Scholar
  177. Urry CM, Padovani P (1995) PASP 107:803Google Scholar
  178. Ursi A et al (2016) J Geophys Res 121:A10Google Scholar
  179. Ursi A et al (2017) J Geophys Res 122:2300Google Scholar
  180. Ursi A et al (2019) J Geophys Res (in press) Google Scholar
  181. Vercellone S et al (2004) MNRAS 353:890Google Scholar
  182. Vercellone S, Chen AW, Giuliani A et al (2008) ApJ 676:L13Google Scholar
  183. Vercellone S, Chen AW, Vittorini V et al (2009) ApJ 690:1018Google Scholar
  184. Vercellone S, D’Ammando F, Vittorini V et al (2010) ApJ 712:405Google Scholar
  185. Verrecchia F, Tavani M, Donnarumma I et al (2017) ApJ 850:27Google Scholar
  186. Vittorini V et al (2011) Astrophys J Lett 732:L22Google Scholar
  187. Vittorini V, Tavani M, Cavaliere A (2014) ApJ 793:98Google Scholar
  188. Vittorini V, Cavaliere A, Tavani M (2017) ApJ 843(L23):201Google Scholar
  189. Weisskopf M et al (2013) ApJ 765:56Google Scholar
  190. Weisskopf M (2019) these ProceedingsGoogle Scholar
  191. Wulf T (1909) Phys Zeit 10:152Google Scholar
  192. Wulf T (1910) Phys Zeit 11:811Google Scholar
  193. Zdziarski AA et al (2018) MNRAS 479:4399Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.INAF/IAPSRomeItaly
  2. 2.Dipartimento di FisicaUniversitá di Roma Tor VergataRomeItaly
  3. 3.Accademia Nazionale dei LinceiRomeItaly

Personalised recommendations