Rendiconti Lincei. Scienze Fisiche e Naturali

, Volume 30, Issue 1, pp 137–153 | Cite as

Potential recharge areas of deep aquifers: an application to the Vercelli–Biella Plain (NW Italy)

  • Domenico A. De Luca
  • Manuela LasagnaEmail author
  • Alice Gisolo
  • Andrea Morelli di Popolo e Ticineto
  • Mauro Falco
  • Cesare Cuzzi
Foreseeing Groundwater Resources
Part of the following topical collections:
  1. Foreseeing Groundwater Resources


Deep aquifers typically serve as a key source of drinking water due to their good groundwater quality. Then the identification of deep aquifers recharge areas provides the local administration with a management tool to protect groundwater, through the implementation of legislative measures for the control of pollution sources. However, the location and size of recharge areas of deep aquifers are often difficult to define and generally require a large amount of data. The aim of this paper is to propose a method to identify potential recharge, throughflow and discharge areas of deep aquifers on a regional scale, due to their hydrodynamic features. As the proposed method identifies where deep-aquifer recharge can occur, but not the recharge rate, delimited areas are defined as “potential”. Particularly, the method analyses piezometric level differences between shallow and deep aquifers to understand groundwater flow direction. The areas where groundwater flow is downward are delimited as potential recharge areas of deep aquifers (PRADAs). The method represents a qualitative approach to the identification of PRADAs, because it permits to narrow down large plain areas extension, highlighting where potentially recharge areas are located. Then PRADAs location and shape can be defined effectively, expanding data sets and furthering analyses (hydrogeological reconstruction, hydraulic connectivity, hydro-chemical and isotopic methods…) in the identified areas. The hydrogeological setting investigated by this method is representative of many anthropized and groundwater-demanding plains around the world that require to be protected. Thus, the method represents a suitable approach for PRADAs’ identification in such settings, especially in low-income countries, where resource availability for studies and analyses is scarce. This method was then applied to a plain area of Northwest Italy, and the locations and sizes of potential recharge, throughflow and discharge areas of deep aquifers were identified on a regional scale.


Recharge area Deep aquifer Piezometric level differences Regional groundwater flow system Plain Environmental management 



The authors would like to thank Provincia di Vercelli and ATO n.2 (Autorità d’Ambito Biellese, Vercellese, Casalese) for the financial support of the research.


  1. Alfoldi L, Galfi J, Liebe P (1985) Heat flow anomalies caused by water circulation. J Geodyn 4(1–4):199–217CrossRefGoogle Scholar
  2. Anderson MP (2005) Heat as a ground water tracer. Gr Water 43:951–961CrossRefGoogle Scholar
  3. Biella GC, Polino R, De Franco R, Rossi PM, Clari PA, Corsi A, Gelati R (1997) The crustal structure of the western Po Plain: reconstruction from the integrated geological and seismic data. Terra Nova 9:28–31CrossRefGoogle Scholar
  4. Blash KW, Bryson JR (2007) Distinguishing sources of ground water recharge by using δ2H and δ18O. Gr Water 45:294–308CrossRefGoogle Scholar
  5. Bonsignore G, Bortolami GC, Elter G, Montrasio A, Petrucci F, Ragni U, Sacchi C, Zanella E (1969) Note illustrative della Carta geologica d’Italia alla scala 1:100,000, Fogli n. 56–57 Torino-Vercelli (Explanatory notes of the geological map of Italy at 1: 100,000 scale, Foglio n. 56–57 Turin-Vercelli). Servizio Geologico d’Italia, Poligrafica & Cartevalori, Ercolano (Napoli), pp 1–96Google Scholar
  6. Bortolami GC, Carraro F, Friz C, Govi M, Malaroda R, Sacchi R (1966) Note illustrative della Carta Geologica d’Italia alla scala 1:100,000, Foglio n. 43 Biella (II ed.) (Explanatory notes of the geological map of Italy at 1: 100,000 scale, Foglio n. 43 Biella). Servizio Geologico d’Italia, Grafica editoriale cartotecnica, RomaGoogle Scholar
  7. Bove A, Casaccio D, Destefanis E, De Luca DA, Lasagna M, Masciocco L, Ossella L, Tonussi M (2005) Idrogeologia della pianura piemontese (Hydrogeology of the Piedmont Po Plain). Mariogros Industrie Grafiche Spa, TorinoGoogle Scholar
  8. Bucci A, Barbero D, Lasagna M, Forno MG, De Luca DA (2017) Shallow groundwater temperature in the Turin area (NW Italy): vertical distribution and anthropogenic effects. Environ Earth Sci 76:221. CrossRefGoogle Scholar
  9. Bugliosi EF (1999) The Midwestern basins and arches regional aquifer system in parts of Indiana, Ohio, Michigan, and Illinois: summary, vol 1423-A. US Geological Survey, RestonGoogle Scholar
  10. Castagna SED, De Luca DA, Lasagna M (2015a) Eutrophication of piedmont quarry lakes (north-western Italy): hydrogeological factors, evaluation of trophic levels and management strategies. J Environ Assess Policy Manag 17:4. CrossRefGoogle Scholar
  11. Castagna SED, Dino GA, Lasagna M, De Luca DA (2015b) Environmental issues connected to the quarry lakes and chance to reuse fine materials deriving from aggregate treatments. In: Lollino G et al (eds) Engineering geology for society and territory—volume 5, urban geology, sustainable planning and landscape exploitation. Springer, Berlin, pp 71–74Google Scholar
  12. Caviglia C, De Luca DA, Lasagna M, Menegon A (2009) Evaluation of potential contamination hazard for deep aquifers through multiaquifer wells: the Northern Turin plain case study). Rend Online Soc Geol It 6:141–142Google Scholar
  13. Clemente P, Lasagna M, Dino GA, De Luca DA (2015) Comparison of different methods for detecting irrigation canals leakage. In: Lollino G (ed) Engineering geology for society and territory, vol 3, river basins, reservoir sedimentation and water resources. Springer, Berlin, pp 23–26Google Scholar
  14. D. Lgs. 152 (2006) Norme in materia ambientale. Suppl. Ord. n. 96 G.U. n. 88 del 14/4/2006Google Scholar
  15. D. Lgs. 30 (2009) Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento. G.U. n. 79 del 4/4/2009Google Scholar
  16. De Luca DA, Falco F, Falco M, Lasagna M (2006a) Studio della variazione del livello piezometrico della falda superficiale nella pianura vercellese (Piemonte) (Study of piezometric level variation in the shallow aquifer of Vercelli Plain, Piedmont). Giornale di geologia applicata 2:387–392Google Scholar
  17. De Luca DA, Lasagna M, Casaccio D, Ossella L, Falco M (2006b) Le acque sotterranee della pianura vercellese—La falda superficiale (Groundwater of the Vercelli Plain—the shallow aquifer). Edizioni Saviolo, VercelliGoogle Scholar
  18. De Luca DA, Lasagna M, Morelli di Popolo e Ticineto A (2007) Installation of a vertical slurry wall around an Italian quarry lake: complications arising and simulation of the effects on groundwater flow. Environ Geol 53:177–189. CrossRefGoogle Scholar
  19. De Luca DA, Lasagna M, Clemente P (2008) Installation of a vertical slurry wall around a large quarry lake in Piemonte: simulation of the effects on groundwater flow. Rendiconti online Soc Geol Italiana 3:306–307Google Scholar
  20. De Luca DA, Dell’Orto V, Destefanis E, Forno MG, Lasagna M, Masciocco L (2009) Assetto idrogeologico dei fontanili della pianura torinese (Hydrogeological structure of the fontanili in Turin plain). Rendiconti Online Soc Geol Italiana 6:199–200Google Scholar
  21. De Luca DA, Debernardi L, Falco M, Ferraris M, Gregorio L, Morelli A, Cuzzi Z, Liardo G (2010) Le acque sotterranee della Pianura Vercellese. Le falde profonde (Groundwater of the Vercelli Plain. The deep aquifers). Litocopy, Vercelli, p 96Google Scholar
  22. De Luca DA, Destefanis E, Forno MG, Lasagna M, Masciocco L (2014) The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull Eng Geol Environ 73:409–427. Google Scholar
  23. Debernardi L, De Luca DA, Lasagna M (2008) Correlation between nitrate concentration in groundwater and parameter affecting aquifer intrinsic vulnerability. Environ Geol 55:539–558. CrossRefGoogle Scholar
  24. Dogramaci SS, Herczeg AL, Schiff SL, Bone Y (2001) Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Appl Geochem 16:475–488CrossRefGoogle Scholar
  25. Domenico PA, Schwartz FW (1998) Physical and Chemical Hydrogeology, 2nd edn. Wiley, HobokenGoogle Scholar
  26. European Commission (2000) Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun L 327:1–72Google Scholar
  27. European Commission (2006) Directive 2006/118/EC of the European parliament and of the council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Union L 372:19–31Google Scholar
  28. Forno MG, De Luca DA, Bonasera M, Bucci A, Gianotti F, Lasagna M, Lucchesi S, Pelizza S, Piana F, Taddia G (2018) Synthesis on the Turin subsoil stratigraphy and hydrogeology (NW Italy). Alp Mediterr Quat 31(2):1–24Google Scholar
  29. Freeze RA, Witherspoon PA (1966) Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathematical model. Water Resour Res 2(4):641–656CrossRefGoogle Scholar
  30. Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. Effect of water table configuration and subsurface permeability variation. Water Resour Res 3(2):623–634CrossRefGoogle Scholar
  31. Freeze RA, Witherspoon PA (1968) Theoretical analysis of regional groundwater flow: 3. Quantitative interpretations. Water Resou Res 4(3):581–590CrossRefGoogle Scholar
  32. Gelati R, Gnaccolini M (1982) Evoluzione tettonico-sedimentaria della zona limite tra Alpi ed Appennino tra l’inizio dell’Oligocene ed il Miocene medio. Mem Soc Geol It. 24:183–191Google Scholar
  33. Gianotti F, Forno MG, Ivy-Ochs S, Monegato G, Pini R, Ravazzi C (2015) Stratigraphy of the ivrea morainic amphitheatre (NW Italy): an updated synthesis. Alp Mediterr Quat 28(1):29–58Google Scholar
  34. Gisolo A, Barbero D, Bucci A, Forno MG, Lasagna M, De Luca DA (2015) The use of temperature monitoring to define the groundwater flow paths. In: proceedings of 42nd IAH congress, AQUA 2015, Session S8.10, Roma 13-18 September 2015Google Scholar
  35. Ingram RGS, Hiscock KM, Dennis PF (2007) Noble gas excess air applied to distinguish groundwater recharge conditions. Environ Sci Technol 41(6):1949–1955CrossRefGoogle Scholar
  36. Kovalevsky VS, Vrba J (2004) General protection of groundwater. In: Kovalevsky VS, Kruseman GP, Rushton KR (eds) Groundwater studies: an international guide for hydrogeological investigations. Series on Groundwater, vol 3. IHP-VI, ParisGoogle Scholar
  37. Lasagna M, De Luca DA (2019) Evaluation of sources and fate of nitrates in the western Po Plain groundwater (Italy) using nitrogen and boron isotopes. Environ Sci Pollut Res 26:2089–2104. CrossRefGoogle Scholar
  38. Lasagna M, De Luca DA (2016) The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles. Environ Sci Pollut Res 23:20431–20448. CrossRefGoogle Scholar
  39. Lasagna M, Franchino E, De Luca DA (2015) Areal and vertical distribution of nitrate concentration in Piedmont plain aquifers (North-western Italy). In: Lollino G (ed) Engineering Geology for society and territory—volume 3, river basins, reservoir sedimentation and water resources. Springer, Berlin, pp 389–392. Google Scholar
  40. Lasagna M, De Luca DA, Franchino E (2016a) Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ Earth Sci 75:240. CrossRefGoogle Scholar
  41. Lasagna M, De Luca DA, Franchino E (2016b) The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environ Earth Sci 75:961. CrossRefGoogle Scholar
  42. Lasagna M, De Luca DA, Franchino E (2018) Intrinsic groundwater vulnerability assessment: issues, comparison of different methodologies and correlation with nitrate concentrations in NW Italy. Environ Earth Sci 77:277. CrossRefGoogle Scholar
  43. Manning AH, Solomon DK, Sheldon AL (2005) Applications of a total dissolved gas pressure probe in ground water studies. Gr Water 41(4):440–448CrossRefGoogle Scholar
  44. Pasquale V, Verdoya M, Chiozzi P (2011) Groundwater flow analysis using different geothermal constraints: the case study of Acqui Terme area, northwestern Italy. J Volcanol Geoth Res 199:38–46CrossRefGoogle Scholar
  45. Pilla G, Sacchi E, Zuppi G, Braga G, Ciancetti G (2006) Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy. Hydrogeol J 14:795–808CrossRefGoogle Scholar
  46. Regione Emilia-Romagna, ENI-AGIP (1998) Riserve idriche sotterranee della Regione Emilia-Romagna. In: Di Dio G (ed) Groundwater resources of the Emilia-Romagna Region. S.EL.CA, FirenzeGoogle Scholar
  47. Regione Lombardia, ENI-AGIP (2002) Geologia degli Acquiferi Padani della Regione Lombardia. In: Carcano C, Piccin A (eds) Geology of the Po Plain aquifers of the Lombardy Region. S.EL.CA, FirenzeGoogle Scholar
  48. Regione Piemonte (1996) Legge regionale 30 aprile 1996, no. 22. Ricerca, uso e tutela delle acque sotterranee. Bollettino Ufficiale della Regione Piemonte n. 19, 8/05/1996Google Scholar
  49. Regione Piemonte (2003) Legge regionale 7 aprile 2003, no. 6. Disposizioni in materia di autorizzazione agli scarichi delle acque reflue domestiche e modifiche alla legge regionale 30 aprile 1996, n. 22 (Ricerca, uso e tutela delle acque sotterranee). Bollettino Ufficiale della Regione Piemonte n.15, 10/04/2003Google Scholar
  50. Scholl MA, Ingebritsen SE, Janik CJ, Kauahikaua JP (1996) Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area. Hawaii Water Resour Res 32:3525–3537CrossRefGoogle Scholar
  51. Sukhija S, Reddy DV, Nagabhushanam P, Syed H, Giri VY, Patil DJ (1996) Environmental and injected tracers methodology to estimate direct precipitation recharge to a confined aquifer. J Hydrol 177:77–97CrossRefGoogle Scholar
  52. Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29:2021–2026CrossRefGoogle Scholar
  53. Toth JA (1962) Theory of groundwater motion in small drainage basins in Central Alberta, Canada. J Geophys Res 57:4375–4387CrossRefGoogle Scholar
  54. Toth JA (1963) A theoretical analysis of ground-water flow in small drainage basins. J Geophys Res 68(16):4795–4811CrossRefGoogle Scholar
  55. Toth JA (1970) Conceptual model of the groundwater regime and the hydrogeological environment. J Hydrol 10:164–176CrossRefGoogle Scholar
  56. Toth JA (1971) Groundwater discharge: a common generation of diverse geological and morphological phenomena. Bull Int Assoc Sci Hydrol, XVI, pp 9–24Google Scholar
  57. Toth JA (1972) Properties and manifestations of regional groundwater movement. In: proceeding of 24th international geological congress, Montreal, Sect. 11, 153–163Google Scholar
  58. Zhou Y, Li W (2011) A review of regional groundwater flow modeling. Geosci Front 2(2):205214Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Earth Sciences DepartmentUniversity of TurinTurinItaly
  2. 2.Ecogeo Studio AssociatoTurinItaly
  3. 3.Regione Piemonte, Settore Tutela delle AcqueTurinItaly
  4. 4.Autorità d’Ambito n.2 “Biellese, Vercellese, Casalese”VercelliItaly

Personalised recommendations